152–164 Bathurst Street and 623–627 Richmond Street West Toronto, ON

Preliminary Hydrogeological Impact Assessment

PREPARED FOR: Toronto (Bathurst & Richmond) LP 257 Borden Street Toronto, ON M5S 2N5

PREPARED BY:

PGL Environmental Consultants 250 Water Street, Suite 102 Whitby, ON L1N 0G5

PGL File: 5660-03.03

April 2021 v1

solve and simplify

Executive Summary

PGL Environmental Consultants (PGL) conducted a Preliminary Hydrogeological Impact Assessment at 152–164 Bathurst Street and 623–627 Richmond Street West, Toronto, Ontario (the Site). The investigation was completed for Toronto (Bathurst & Richmond) LP. PGL assessed groundwater conditions at the Site, and potential impacts on groundwater from dewatering during the excavation and operation of the Site. This report is preliminary as PGL has not finished collecting groundwater elevations for three months, as mandated by Toronto Water. This report will be updated once that work is complete.

The Site is comprised of nine parcels on the southwest corner of Bathurst Street and Richmond Street West, and it is improved with mixed-use, low-rise buildings (residential and commercial). The proposed development includes construction of a 17-storey, mixed-use condominium building with two levels of underground parking. The building at 164 Bathurst Street has been incorporated into the new building design; all other existing buildings will be removed.

Seven monitoring wells were installed at the Site: two shallow wells, four intermediate wells, and one deep well ranging in depth from 4.5m to 13m below ground surface (bgs).

Groundwater conditions were assessed by reviewing existing information and reports on geology and hydrogeology. The hydraulic conductivity is based on published literature associated with soil stratigraphy where the water table was observed. This data was then used to approximate flow volumes during construction dewatering and long-term dewatering for the development. PGL then evaluated potential impacts to groundwater due to construction dewatering.

The key results of the hydrogeological impact assessment for the Site are:

- Construction dewatering will be required during the excavation, with a maximum estimated flow of 966L/day;
- There are no anticipated impacts to aquifers, nearby water wells, or baseflow to surface water features due to the planned construction dewatering for the new residential building;
- Construction dewatering at the Site will not likely require registration in the Environmental Activity and Sector Registry;
- A Permit to Take Water is not likely required for the construction dewatering;
- Long-term dewatering of groundwater for the entire Site is anticipated to be a maximum of 300L/day;
- Groundwater at the Site met the City of Toronto Sanitary Sewer By-Law limits;
- Groundwater at the Site exceeded the City of Toronto Storm Sewer By-Laws for Total Suspended Solids and total manganese. Confirmatory sampling or groundwater treatment should be completed prior to dewatering operations; and
- If the construction dewatering plan changes or any of the assumptions stated in this report are otherwise violated, re-evaluation of the potential hydrogeological impact will be required.

Assessment of ground settling due to dewatering was outside the scope of this work program and area of expertise of the authors. We recommend this potential impact be evaluated by a geotechnical engineer.

This Executive Summary is subject to the same standard limitations as contained in the report and must be read in conjunction with the entire report.

Table of Contents

1.0	Introd	uction	1		
2.0	Scope of Work				
3.0					
	3.1	Topography and Physical Setting	2		
	3.2	Geology	3		
4.0	Hydro	geological Work Program	3		
	4.1	Groundwater Elevations and Flow Direction	3		
	4.2	Aquifer Performance Tests	4		
5.0	Dewat	ering Calculations	5		
	5.1	Dewatering Volumes: Construction Dewatering	5		
	5.2	Dewatering Volume: Long-term Drainage into Perimeter Drains			
6.0	Hydro	geological Impact Assessment	7		
	6.1 Groundwater Quantity				
		6.1.1 Environmental Activity and Sector Registry and Permit to Take Water	3		
	6.2	Groundwater Quality	9		
7.0	Summ	ary	9		
8.0	Stand	rd Limitations10	D		

LIST OF TABLES

In text	
Table A: Site Buildings and Current Uses	2
Table B: Site Geology	. 3
Table C: Croundwater Levels and Elevetions	٨

Table C: Groundwater Levels and Elevations	4
Table D: Elevations for Dewatering Calculations	5

Appended Table 1: Groundwater Elevations

LIST OF FIGURES

Figure 1	Site Location
Figure 2	Groundwater Elevations
Figure 3	Radius of Influence

LIST OF APPENDICES

- Appendix 1 Borehole Logs
- Appendix 2 Proposed Development Plans
- Site Grading Plans (existing and proposed Site elevations) Laboratory Certificate of Analysis Appendix 3
- Appendix 4

List of Acronyms

asl	-	above sea level
BHM	-	borehole with monitoring well installed
bgs	-	below ground surface
ESA	-	Environmental Site Assessment
m/s	-	metres per second
m asl	-	metres above sea level
m bgs	-	metres below ground surface
MECP	-	Ministry of the Environment, Conservation and Parks
MW	-	borehole with a monitoring well installed
PGL	-	PGL Environmental Consultants
TSS	-	Total Suspended Solids

1.0 INTRODUCTION

Toronto (Bathurst & Richmond) LP retained PGL Environmental Consultants (PGL) to conduct a Preliminary Hydrogeological Impact Assessment at 152–164 Bathurst Street and 623–627 Richmond Street West in Toronto, Ontario (the Site, Figure 1). The investigation was conducted to assess groundwater conditions at the Site in advance of proposed redevelopment activities.

This report is preliminary, as PGL has not finished collecting groundwater elevations for three months, as mandated by Toronto Water. This report will be updated once that work is complete.

The Site is comprised of nine parcels on the southwest corner of Bathurst Street and Richmond Street West. The Site is improved with mixed-use, low-rise buildings (residential and commercial). Most of the rear yards are paved for parking.

The proposed development includes construction of a 17-storey, mixed-use condominium building with two levels of underground parking. The building at 164 Bathurst Street will most likely be designated as a heritage building, and as such it has been incorporated into the new building design; all other existing buildings will be removed.

This work was completed concurrently with supplemental PGL's Phase 2 Environmental Site Assessment (ESA), and Terrapex Environmental's (Terrapex's) geotechnical investigation. The fieldwork included drilling and installing seven monitoring wells: two shallow wells, four intermediate wells, and one deep well ranging in depth from 4.5m to 13m below ground surface (bgs). PGL retained Terrapex to complete the geotechnical investigation, and their report will be submitted under separate cover.

This Hydrogeological Impact Assessment has been prepared in accordance with Ontario *Water Resources Act*, Ontario Regulation 387/04, and Toronto Municipal Code Chapter 681 –Sewers.

2.0 SCOPE OF WORK

To meet the objectives noted above, PGL:

- 1. Reviewed and evaluated existing Site information, including:
 - a. Borehole logs and monitoring well installation details of the seven onsite monitoring wells installed in February 2021 (Appendix 1);
 - b. Architect drawings by KIRKOR Architects and Planners, April 15, 2021 (Appendix 2);
 - c. A Grading Plan by Husson Engineering + Management April 8, 2021 (Appendix 3); and
 - d. Available Ministry of the Environment, Conservation and Parks (MECP) well records, and Ministry of Natural Resources and Forestry Heritage maps.
- 2. Measured static groundwater levels and completed single-well response tests at each of the five onsite monitoring wells. Groundwater recovery and recharge at the Site is very slow, and the single-well response tests did not yield useable data. The estimated hydraulic conductivity at the Site is from published reference materials.
- 3. Completed a total of three of six measurements of static groundwater levels as required by Toronto Water. Three events are pending.

- 4. Determined whether groundwater would be encountered during construction, and estimated flow rate for dewatering;
- 5. Collected a water sample on March 17, 2021 from one onsite well (BH204M / MW204) to assess water quality to the City of Toronto's sanitary and stormwater sewer by-law limits; and
- 6. Conducted a Hydrogeological Impact Assessment to identify possible project impacts on groundwater quantity and quality.

3.0 SITE DESCRIPTION

The Site encompasses nine rectangular properties on the southwest corner of Bathurst Street and Richmond Street West. It is bounded to the north by Richmond Street West followed by commercial properties, to the east by Bathurst Street followed by former residential properties undergoing redevelopment, to the south by a residential condominium, and to the west by residential properties and a public school. The Site buildings vary in construction and are used for residential or mixed commercial and residential purposes.

The Site is roughly 0.20 hectares with a mix of building types, occupants, and uses as summarized below.

Address	Building Description and Current Use
152–154 Bathurst Street	Two-storey commercial building with a basement. Occupied by Royal LePage, realty brokerage.
156–158 Bathurst Street	Two-storey, mixed-use building, with a partial basement on the west side of the building. The basement and ground floor are currently vacant. Previously occupied by Cyclemotive – a store selling bicycles and accessories, and providing bicycle servicing. The second floor is a large residential unit.
160 Bathurst Street	Former two-storey residential building with a basement. The building was severely damaged by a fire that occurred in March 2019. The building has been demolished and was most recently used as an outdoor patio.
162 Bathurst Street	Former two-storey, mixed-use building. The ground floor was previously used as a barber shop with a residential unit on the second floor. The building was severely damaged by a fire that occurred in March 2019. The building has been demolished and was most recently used as an outdoor patio.
164 Bathurst Street	Mixed-use, three-storey building with a basement. The basement and ground floor are occupied by a restaurant. The second and third floor are residential units.
623-625 Richmond Street	Three-storey, semi-detached, multi-unit residential building with a basement.
627 Richmond Street	Three-storey, multi-unit residential building with a basement.

Table A: Site Buildings and Current Uses

3.1 Topography and Physical Setting

The Site and area are generally flat. Lake Ontario is about 1.2km south of the Site.

No Ministry of Natural Resources Heritage Sites, Area of Natural and Scientific Research sites, Oak Ridges Moraine, Niagara Escarpment or Environmentally Sensitive areas were identified within 250m of the Site.

Based on topography and proximity of Lake Ontario, the inferred local and regional groundwater flow direction is to the southeast toward Lake Ontario.

3.2 Geology

Geological maps show the surficial soils near the Site are expected to be glaciolacustrine deposits: sand, gravelly sand, and gravel nearshore and beach deposits (OGS, 2000). Overburden at the Site is underlain by Georgian Bay Formation bedrock consisting of shale, limestone, dolostone, and siltstone (OGS, 2010). Bedrock is expected to be at a depth of roughly 11m based on review of Ministry of the Environment, Conservation, and Parks (MECP) well records.

PGL / Terrapex advanced 12 boreholes, ranging in depth from 0.9m bgs to 16m bgs across the Site in February 2021 (BH201 to BH212). Seven monitoring wells ranging in depth from 4.5m bgs to 13m bgs were installed and are identified interchangeable as MW20# or BH20#M (BH201MD, BH201MS, BH202M, BH203M, BH204M and BH205M, BH206M. The Well BH201M location has two wells "nested" one deep (D) and the second one shallow (S).

The borehole logs are provided in Appendix 1. Soil stratigraphy beneath the asphalt, brick pavers, or topsoil consisted of various fill layers consisting of either gravelly sand, clayey silt, and silty sand to a maximum depth of 3.5m bgs. The fill was underlain by the following soil types: silty clay (till), silty fine sand, silty clay till and weathered shale, and shale with limestone interbeds. The locations of all wells are provided in Figure 1. In general, Site geology comprised the following:

Table B: Site Geology

Stratigraphy	Approximate Depths (m bgs)
Asphalt, brick pavers, topsoil	0.0–0.2
Fill gravelly sand, clayey silt, silty sand	0.2–3.5
Silty clay (till), some sand	2.0–9.0
Silty fine sand	8.5–10.5
Silty clay (till) and weathered shale	10.0–12.5
Shale with limestone interbeds	12.0–16.0

4.0 HYDROGEOLOGICAL WORK PROGRAM

To estimate groundwater extraction rates during construction, several hydrogeological parameters must be measured or calculated. The following sections describe how the Site groundwater elevations, inferred groundwater flow direction, hydraulic gradient, and hydraulic conductivity were estimated.

4.1 Groundwater Elevations and Flow Direction

PGL measured depth to groundwater in each of the seven monitoring wells on three occasions, as shown in Table 1 (appended). Groundwater depths and elevations for the March 9, 2021 monitoring round are shown in Table C below. The depth to groundwater was recorded using a Solinst water level tape to establish static groundwater levels. The measured depth to groundwater was translated to elevation above sea level (asl) based on the ground surface elevations determined in the elevation survey.

The groundwater elevation fluctuated by 0.21m to 4.80m in each well during the three monitoring rounds from March 9 to March 25, 2021. The minimum measured groundwater elevation was

80.88m asl, and the maximum was 87.72m asl. Static groundwater has not been achieved, as groundwater elevations are continuing to increase in the wells, although this may be due to the seasonal spring high water levels.

	Ground Elevation	9-Mar-2021		
Location	(m asl)	Depth to Groundwater (m bgs)	Groundwater Elevation (m asl)	
Shallow Wells				
BH202M	90.18	dry @ 6.104	Dry	
BH206M	87.43	3.336	86.66	
Intermediate V	Intermediate Wells			
BH201MS	90.23	7.908	82.32	
BH203M	90.33	2.611	87.72	
BH204M	90.50	6.751	83.75	
BH205M	90.18	7.674	82.51	
Deep Well				
BH201MD	90.23	8.226	82.00	

Table C: Groundwater Levels and Elevations

Notes: asl = above sea level bgs = below ground surface

Figure 2 shows the groundwater elevations measured on March 9, 2021. Groundwater contours were not generated, as groundwater recharge is very slow, and levels have not recovered from the drilling and groundwater monitoring events conducted in early March.

Based on local topography and proximity to Lake Ontario, groundwater flow direction is most likely to the south toward Lake Ontario.

4.2 Aquifer Performance Tests

Single-well response tests (slug tests) were conducted at all wells on March 25, 2021 to estimate the hydraulic conductivity of the subsurface materials expected to be encountered during the excavation of basements or building footings. However, due to very low recharge rates, the monitoring wells had not yet recovered from drilling two weeks prior, and the results of the slug tests could not be reliably interpreted.

Instead, we have reviewed literature values for silt (5 x 10^{-7} to 1 x 10^{-6} m/s), clay (1 x 10^{-10} to 1 x 10^{-7} m/s), and shale (1 x 10^{-13} to 1 x 10^{-9} m/s), respectively.¹ As the recharge rates are so low, use of literature values for hydraulic conductivity were determined by PGL to be sufficient for the purposes of dewatering calculations.

The main soil type observed at the Site is a silty clay till unit. This till unit is likely not homogeneous, so the uncertainty in the estimated hydraulic conductivities is likely elevated. To account for this increased uncertainty, and the observed low recharge rate, we have used an estimated hydraulic conductivity of 1×10^{-8} m/s for the dewatering calculations.

¹ J. Patrick Powers, Arthur B. Corwin, Paul C. Schm, "Construction Dewatering and Groundwater Control, New Methods and Applications, 3rd Edition", John Wiley and Sons Inc, 2007.

5.0 DEWATERING CALCULATIONS

To evaluate the potential impacts on nearby groundwater receptors from construction dewatering for the hotel excavation, approximate groundwater flow rates need to be calculated. In addition, the radius of influence needs to be estimated. The radius of influence is the maximum distance from the area of groundwater extraction where groundwater pressure decreases can be measured, and represents the area where potential hydrogeological impacts may occur.

Several analytical models have been developed to generate these estimates. These models typically have similar assumptions to the hydraulic conductivity solutions discussed in Section 4.2, including steady-state flow and a homogeneous aquifer of infinite extent.

The elevations listed in Table D were used to determine the dewatering volumes. These are based on the drawings provided in Appendices 2 and 3.

Lowest Basement Elevation	80.91m asl
Foundation Elevation	80.61m asl (lowest basement with 0.3m deep footings)
Ground Elevation	Existing elevation ranges from 89.90m to 90.47m asl Finished floor will range from 89.95m to 90.6 m asl

Table D: Elevations for Dewatering Calculations

5.1 Dewatering Volumes: Construction Dewatering

To calculate approximate flow volumes of groundwater into the redevelopment excavation during construction, the excavation was assumed to be rectangular, and this rectangular excavation was modelled as an equivalent well, assuming groundwater will be flowing radially into the excavation. The equation representing this analytical model, from Powers et al. (2007)², is:

$$Q_{\rm w} = \frac{\pi K (H^2 - h_{\rm w}^2)}{\ln R_0 / r_{\rm w}}$$

Where:

Parameter	Input	Description	
Q (L/day)	-	Q is the volumetric flow into the excavation (i.e., parameter being calculated)	
K (m/s)	1.0 x 10 ⁻⁸	K is the hydraulic conductivity. We have used a K value from published literature. The excavation will extend through the silty clay till layer (Table B), and therefore we have used 1.0 x 10-8 for the hydraulic conductivity (Section 4.2) of the till to approximate groundwater flow.	

² J. Patrick Powers, Arthur B. Corwin, Paul C. Schm, "Construction Dewatering and Groundwater Control, New Methods and Applications, 3rd Edition", John Wiley and Sons Inc, 2007.

Parameter	Input	Description
H (m)	 H is the static height of the water table (potentiometric surface) with respect to a datu. The highest measured groundwater elevation was 87.72m asl in BH203M. To conservative and account for further seasonal and short-term fluctuations, we h assumed that the water table could fluctuate up to 1m above this level. The assurgroundwater elevation across the Site is therefore 88.72m asl. 10.72 The elevation of the datum is conservatively estimated to be 78m asl (approximately top of the weathered shale unit, which is interpreted to be the bottom of the aquifer) across to the design groundwater elevation (78.56m asl) required for construct H is the difference between the water level elevation (88.72m asl) and the assurdatum (78.0m asl) which is 10.72m. 	
h (m)	0.56	 h is the static height of the water table with respect to the level required in the excavation. The existing Site elevation in the southeast corner, 89.90m asl (Appendix 3), was used for the finished Site level. The building is to be completed with two levels of underground parking (P1 and P2). Based on email communication, the underground parking is split level, and the lowest excavated area is below Level P2 (-9.04m bgs) with allowance for footings (0.3m), elevator pit (0.5m), and buffer (0.5m). The depth of excavation is 79.56m asl. In order to maintain dry and stable working conditions during excavation, dewatering of 1m below the excavation floor is required. The water level required in the excavation is therefore 78.56m asl. The height of the required water level (78.56m asl) above the datum level (78.0m asl) is therefore 0.56m.
Ro	100	\mathbf{R}_{o} , the radius of influence, is related to the maximum distance where drawdown from pumping can be measured, which corresponds to the lateral distance between H and h. \mathbf{R}_{o} that was calculated using the empirical relationship developed by Sichart (Powers et al, 2007): $\mathbf{R}_{o} = 3000^{*}$ (H-h)*K ^{0.5} . This empirical equation yields a value of 10.0m. Considerable professional judgement is required to employ this relationship. For these flow calculations, the Sichart relationship yields a value close to the edge of the excavation, which would result in large hydraulic gradients and high flow rates. Experience and professional judgement dictate this is unrealistic. Although smaller \mathbf{R}_{o} values result in higher estimated groundwater flow rates and the use of the Sichart method is precautionary, the radius of influence must be significantly larger than the equivalent radius of the excavation, r . Based on professional judgement, 10.0m is too small to be used for hydrogeological impact assessment. Based on PGL's experience, 100m is a reasonable radius of influence for the magnitude of drawdowns and hydraulic conductivities anticipated at the Site. As a conservative measure, the radius of influence, \mathbf{R}_{o} , was assumed to be 100m.
r	27.60	r is the equivalent radius of the excavation when modelled as an equivalent well. We have assumed that the entire Site will be excavated to allow for utilities trenches and building footings. As indicated in the provided Site plans (Appendix 2), the Site width is 40.20m, and the Site length is 42.50m. We have added an extra 1m at each end to act as a buffer. The equivalent radius is calculated by $(a+b)/\pi$, where a = 42.20m, and b = 44.50m, which equals 16.92m.

Using these input values, the total volumetric flow to the excavation for construction is estimated at **241L/day** under steady-state conditions. To account for the initial draining of pores, precipitation, additional dewatering of service utility trenches, runoff, and uncertainty in the input parameter estimates, a safety factor of **4** was deemed reasonable, based on experience at similar sites. The maximum anticipated flow rate is therefore **966L/day**.

5.2 Dewatering Volume: Long-term Drainage into Perimeter Drains

To calculate the long-term drainage volumes at the basement perimeter drains, all parameter estimates from Section 5.1 remain the same, except:

Parameter	Input	Description	
H (m)	H (m)8.11The datum changes to 80.61m asl, corresponding to the maximum depth basement level P2 (9.04m) plus the footings (0.3m), and assumes horizontal flow to the foundation drain. The difference between the static groundwater level (88.72) and the dat therefore 8.11m.		
h (m)	0	No dewatering is required below the footings. The difference in elevation between the datum and the required water level is therefore zero.	
R₀	50	For these flow calculations, the Sichart relationship yields a value of 7.98m. Based on professional judgement, 7.98m is too small for hydrogeological impact assessment. Based on PGL's experience, 50m is a reasonable radius of influence for the magnitude of drawdowns and hydraulic conductivities anticipated at the Site for long-term dewatering. As a conservative measure, the radius of influence, R_o , was assumed to be 50m.	
r	27.60	For long-term drainage, only dewatering of the building footprint is required. The maximum dimensions measured on the provided drawings (Appendix 2) are 40.2m and 42.50m. We have added an extra meter at each end to act as a buffer. The equivalent radius is calculated as (a+b)/ π , where a = 42.20m and b = 44.50m. The equivalent radius is therefore 20.18m.	

Using these new input values, the total flow of groundwater into the building's foundation drainage system is estimated to be a maximum of **300L/day** under steady-state conditions. No additional safety factor is required for long-term dewatering calculations.

6.0 HYDROGEOLOGICAL IMPACT ASSESSMENT

The impact assessment portion of PGL's scope characterized the potential impacts of the construction dewatering at the building foundation. This assessment discusses quantity and then quality of groundwater.

6.1 Groundwater Quantity

Potential hydrogeological impacts evaluated for the proposed construction are:

- Impacts to water levels in aquifers;
- Impacts to water levels in nearby water wells; and
- Impacts to baseflow in nearby surface water features.

Geological maps (Toronto and Region Conservation³) show that between Queen Street and Lake Ontario within the West Don River watershed, it is likely that only the Scarborough Aquifer underlies the Site, and is overlain by recent sediments. The Scarborough Aquifer lays directly on the shale bedrock. Based on the provided borehole logs, and the stratigraphy encountered during drilling, this aquifer was either not encountered or is dominated by very fine-grained sediments

³ Toronto and Region Conservation (2009). Don River Watershed Plan: Geology and Groundwater Resources – Report on Current Conditions. Figure 17: Don River watershed cross section A-A.

near the Site. Regardless, impact to the aquifer is expected to be negligible as dewatering is anticipated to be less than 1,000L/day.

PGL conducted a water well search for wells within 500m of the Site, and identified 169 total wells. These are identified as:

- 2 wells abandoned;
- 2 monitoring wells;
- 4 monitoring wells classified as abandoned;
- 54 wells listed as monitoring/test hole;
- 29 not classified;
- 7 observation wells;
- 5 observation wells listed as not used;
- 46 wells listed as observation and monitoring wells;
- 19 test holes; and
- 1 test hole listed as not used.

The 29 unclassified wells are not likely to be used for water supply. The Site is in downtown Toronto, which is municipally serviced, and all unclassified wells were likely installed in or after 2010, when the existing municipal services were likely to be in place. It is therefore likely that these wells are monitoring wells/test holes.

Only seven wells were within the 100m radius of influence – four wells not classified, and three test hole/observation/monitoring wells. As the Site is within Toronto, these are not expected to be drinking water wells. No adverse impacts to these wells or any wells within 500m of the Site are expected.

The closest surface water body is Lake Ontario, over 1m south of the Site. There are no surface water bodies within the anticipated radius of influence; therefore, baseflow to them will not likely be impacted by Site dewatering.

6.1.1 Environmental Activity and Sector Registry and Permit to Take Water

In Ontario, groundwater takings for construction dewatering require registration in the Environmental Activity and Sector Registry if the extracted groundwater rates are greater than 50,000L/day and less than 400,000L/day. Based on the current construction plan, the dewatering volumes during construction at the Site will not require registration in the Environmental Activity and Sector Registry for online construction dewatering registration.

A Permit to Take Water is required by Ontario for long-term takings of greater than 50,000L/day and construction dewatering projects of greater than 400,000L/day. It is unlikely a Permit to Take Water will be required for this work.

If the proposed development is revised and the excavation will extend deeper than proposed, a Permit to Take Water may be required for construction. In addition, if any design changes violate the assumptions regarding the dewatering, a Permit to Take Water may be required.

6.2 Groundwater Quality

PGL collected a groundwater sample from the Site on March 17, 2021. The groundwater results were compared against the City of Toronto Sanitary and Storm Sewer By-Laws to evaluate if treatment may be required prior to discharge of groundwater to the sewer system. The laboratory Certificate of Analysis is presented in Appendix 4.

Groundwater exceeded the City of Toronto Sewer By-Laws Limits for Storm Sewer Discharge for Total Suspended Solids and total manganese. Groundwater concentrations met all other respective limits for Sanitary Sewer Discharge and Storm Sewer discharge.

We recommend confirmatory sampling for the applicable parameters prior to discharge to the storm or sanitary sewer system, so that the appropriate permits can be obtained prior to dewatering operations. Alternatively, a treatment system could be incorporated into the dewatering operations to ensure concentrations meet the applicable by-laws.

7.0 SUMMARY

PGL completed a Hydrogeological Impact Assessment at 152–164 Bathurst Street and 623–627 Richmond Street West in Toronto, Ontario. The purpose of the assessment was to determine potential impacts due to construction and dewatering at the Site.

The assessment determined the following features of the Site:

- Groundwater elevation ranged between 80.88m asl to 87.72m asl between March 9 and 25, 2021;
- The excavation will extend down to an elevation of 79.56m asl, within the silty clay till, and dewatering is required to an elevation of 78.56 asl; and
- The hydraulic conductivity is based on published literature associated with soil stratigraphy, where the water table was observed, and where the excavation will extend is 1.0x10⁻⁸m/s.

The key results of the Hydrogeological Impact Assessment for the Site are:

- Construction dewatering will be required during the excavation, with a maximum estimated flow of 966L/day;
- There are no anticipated impacts to aquifers, nearby water wells, or baseflow to surface water features due to the planned construction dewatering for the new residential building;
- Construction dewatering at the Site will not likely require registration in the Environmental Activity and Sector Registry;
- A Permit to Take Water is not likely required for the construction dewatering;
- Long-term dewatering of groundwater for the entire Site is anticipated to be a maximum of 300L/day;
- Groundwater at the Site met the City of Toronto Sanitary Sewer By-Law limits;
- Groundwater at the Site exceeded the City of Toronto Storm Sewer By-Laws for Total Suspended Solids and total manganese. Confirmatory sampling or groundwater treatment should be completed prior to dewatering operations; and
- If the construction dewatering plan changes or any of the assumptions stated in this report are otherwise violated, re-evaluation of the potential hydrogeological impact will be required.

Assessment of ground settling due to dewatering was outside the scope of this work program and area of expertise of the authors. We recommend this potential impact be evaluated by a geotechnical engineer.

8.0 STANDARD LIMITATIONS

This report is accurate at a high level for reasonably foreseeable conditions. The limitations of the work are not always obvious, and the best way to understand them is discussion with the authors in the context of your intended use. This work is a snapshot in time, so any use must consider that conclusions may change materially because of changes in site condition or regulatory context.

Only the addressee, our client, and their agents may rely on this report for the stated purpose. We warrant only that the work was done as described and is similar to the work that would be done by other qualified consultants in this area. Our contract includes limitations on liability related to professional errors and omissions.

Respectfully submitted,

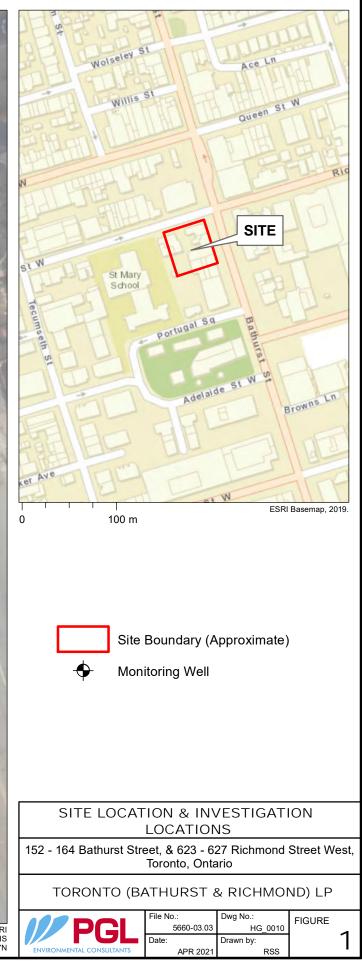
PGL ENVIRONMENTAL CONSULTANTS

Per:

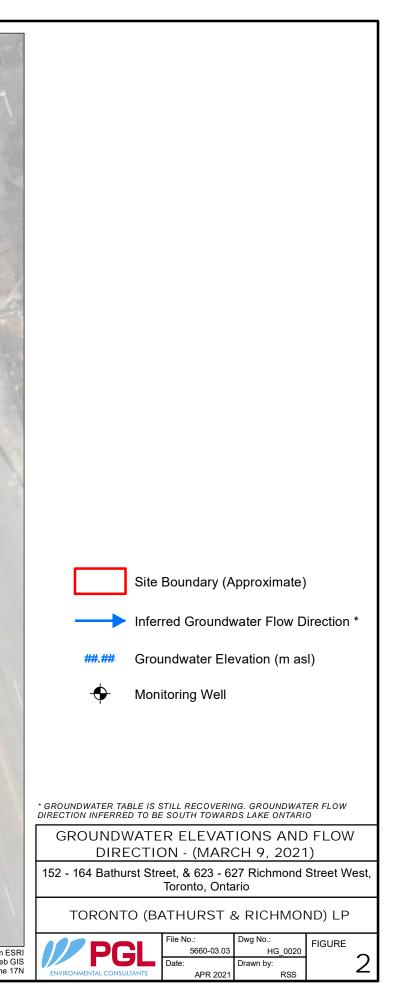
Salima Jaffer, B.Sc. Environmental Consultant

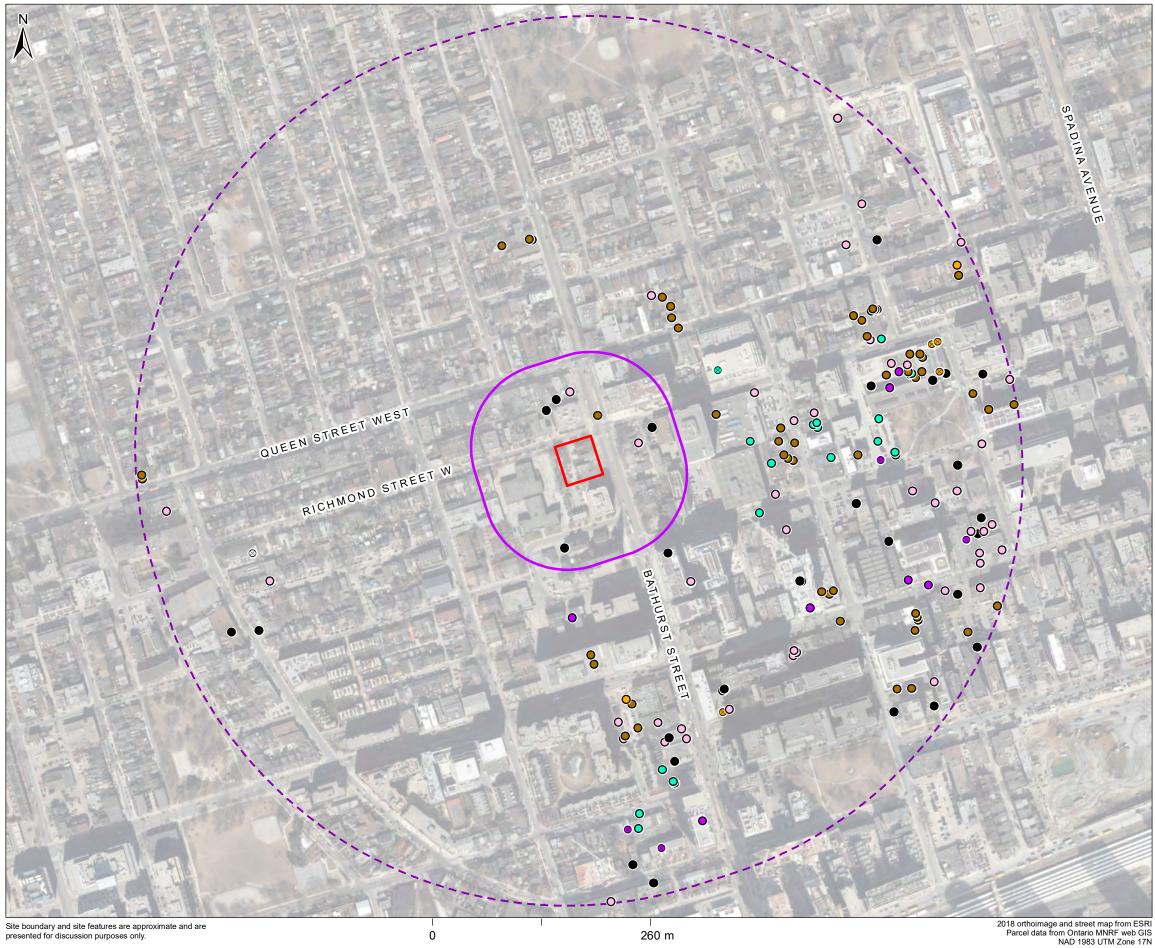
Christina Trotter, M.Sc., P.Geo. Senior Hydrogeologist

SAJ/CET/mtl Y:\5600-5699\5660 - Originate\03-03_Client Docs\r-5660-03-03-HydroG-v1.doc



Figures






2018 orthoimage and street map from ESRI Parcel data from Ontario MNRF web GIS NAD 1983 UTM Zone 17N

Site Boundary (Approximate)

WellSearchArea - 500m

Radius of Influence - 100m

Ontario Well Record DB Classification

- Monitoring Well 0
- Monitoring Well Abandoned \otimes
- Monitoring Well/Test Hole 0
- Not Classified
- **Observation Well** C
- Observation Well Not Used 8
- Observation/Monitoring Well 0
- Test Hole 0
- Test Hole Not Used

RADIUS OF INFLUENCE

152 - 164 Bathurst Street, & 623 - 627 Richmond Street West, Toronto, Ontario

TORONTO (BATHURST & RICHMOND) LP

	File No.: 5660-03.03	Dwg No.: HG_0030	FIGURE
FGL	Date:	Drawn by:	3
ENVIRONMENTAL CONSULTANTS	APR 2021	RSS	0

Tables

PGL Environmental Consultants Analytical Table Notes Soil and Groundwater Samples

- BH_MMonitoring WellMWMonitoring Wellm aslmetres above sea levelm btrmetres below top of riserm bgsmetres below ground surface
- CNA could not access

Table 1 Groundwater Elevations 152-164 Bathurst Street 623-627 Ricmond Street West, Toronto, Ontario Toronto (Bathurst Richmond) LP, PGL File 5660-03.03

				09-Mar-21			17-Mar-21		25-Mar-21				
Location	Riser Elevation (m asl)	Ground Elevation (m asl)	Depth to Groundwater (m btr)	Depth to Groundwater (m bgs)	Groundwater Elevation (m asl)	Depth to Groundwater (m btr)	Depth to Groundwater (m bgs)	Groundwater Elevation (m asl)	Depth to Groundwater (m btr)	Depth to Groundwater (m bgs)	Groundwater Elevation (m asl)		
Shallow Wells													
BH202M	90.10	90.18	dry @6.024	dry @6.104	Dry	5.56	5.65	84.54	5.24	5.32	84.86		
BH206M	87.43	87.43	3.241	3.336	84.19	3.34	3.48	84.09	3.12	3.22	84.31		
Intermediate W	ells												
BH201MS	90.14	90.23	7.821	7.908	82.32	7.68	7.77	82.46	7.48	7.57	82.66		
BH203M	90.22	90.33	2.504	2.611	87.72	7.02	7.13	83.20	7.30	7.41	82.92		
BH204M	90.38	90.50	6.634	6.751	83.75	5.26	5.38	85.12	2.98	3.10	87.40		
BH205M	90.07	90.18	7.564	7.674	82.51	7.34	7.43	82.73	7.04	7.15	83.04		
Deep Well													
BH201MD	90.14	90.23	8.136	8.226	82.00	9.26	9.33	80.88	8.75	8.84	81.39		

Appendix 1

Borehole Logs

Borehole Logs by PGL Environmental

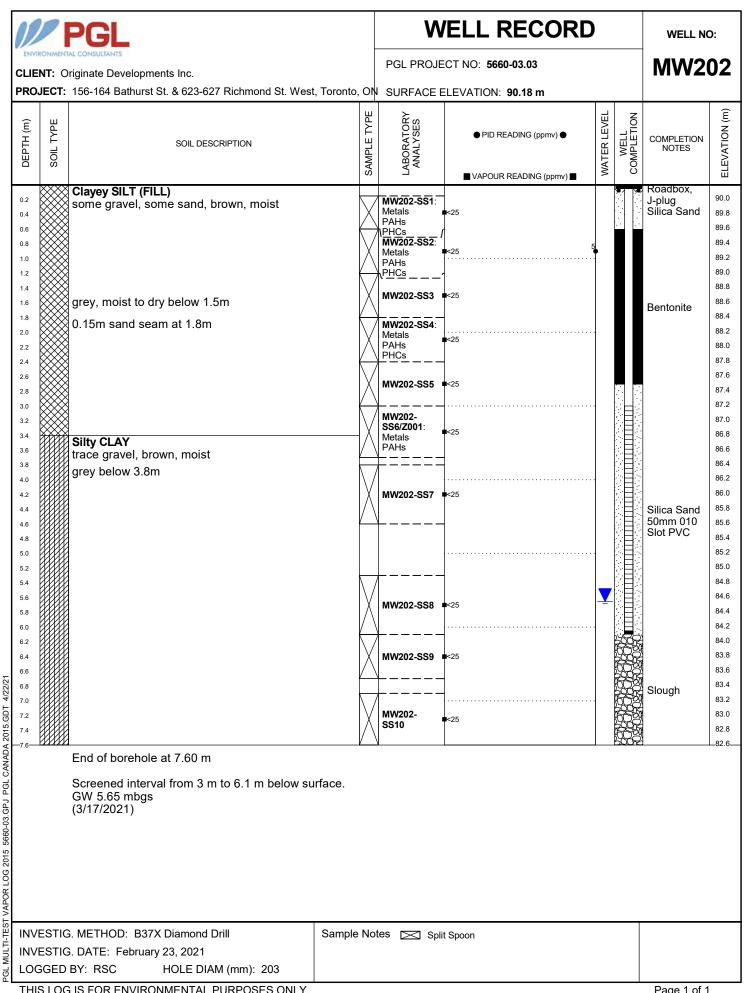
P	GL	E	BORE	HOLE RECOR	ND	BOREHOLE	E NC
-	inate Developments Inc.			NO: 5660-03.03		BH20	
SOIL TYPE	164 Bathurst St. & 623-627 Richmond St. West SOIL DESCRIPTION	SAMPLE TYPE	LABORATORY ANALYSES	PID READING (ppmv) VAPOUR READING (ppmv)	WELL	COMPLETION NOTES	
11. 3.11	OPSOIL layey SILT (FILL) ith rock fragments, grey, moist						90
0.4			BH207-SS1: Metals			Bentonite	8
1.6			PAHs PHCs	€<25			8
	METHOD: Geoprobe 420M DATE: February 25, 2021 f: RSC HOLE DIAM (mm): 102	Sample Notes	Macro C Sampler	Core			

	PGL		BORE	HOLE RECOR	RD	BOREHOLE	E NC
	iginate Developments Inc.	PC	GL PROJECT	NO: 5660-03.03		BH20	3(
	156-164 Bathurst St. & 623-627 Richmond St. West	, Toronto, ON SL	JRFACE ELE	VATION: 90.5 m			
DEPTH (m) SOIL TYPE	SOIL DESCRIPTION	SAMPLE TYPE	LABORATORY ANALYSES	● PID READING (ppmv) ●	WELL	COMPLETION NOTES	
0.2	Sandy SILT (FILL) with gravel, trace clay, grey and brown, moist						90
1.4			BH208: Metals	- 		Bentonite	9
.8			PAHs PHCs				8

	1	PGL		BORE	HOLE RECOR	D	BOREHOLE	NO:	
		riginate Developments Inc.	P	GL PROJECT	NO: 5660-03.03		BH209		
		156-164 Bathurst St. & 623-627 Richmond St. West, Toronto, ON	1 5	URFACE ELE					
DEPTH (m)	SOIL TYPE	SOIL DESCRIPTION	SAMPLE TYPE	LABORATORY ANALYSES	● PID READING (ppmv) ● ■ VAPOUR READING (ppmv) ■	WELL	COMPLETION NOTES	ELEVATION (m)	
0.2		Silty SAND (FILL) trace gravel, grey, moist						90.4	
0.4				BH209-SS1: Metals PAHs PHCs	■<25		Bentonite	90. 90.	
0.6		Clayey SILT trace construction debris, brown, moist		— — — — — — — ВН209-SS2	■<25			89.3	

1	PGL		BORE	HOLE RECORD)	BOREHOLE	NO:
	Originate Developments Inc.	PC	GL PROJECT		BH210		
PROJEC	T: 156-164 Bathurst St. & 623-627 Richmond St. West, Toronto, ON	เ รเ	JRFACE ELE	VATION: 90.414 m			
DEPTH (m) SOIL TVPE	SOIL DESCRIPTION	SAMPLE TYPE	LABORATORY ANALYSES	● PID READING (ppmv) ●	COMPLETION	COMPLETION NOTES	ELEVATION (m)
0.2 0.4 0.6 0.8	ASPHALT Silty SAND (FILL) with gravel, grey, moist Clayey SILT (FILL) trace construction debris, trace gravel, brown, moist		BH210-SS1: Metals PAHs PHCs BH210-SS2	<25	E	Bentonite	90.1 90.1 89.1 89.1

PGL MULTI-TEST VAPOR LOG 2015 5660-03.GPJ PGL CANADA 2015.GDT 4/22/21


11	PGL		BORE	HOLE RECORD	BOREHOLE	E NC
	TAL CONSULTANTS Driginate Developments Inc. :156-164 Bathurst St. & 623-627 Richmond St. West			ET NO: 5660-03.03 Evation: 90.365 m	BH2'	11
DEPTH (m) SOIL TYPE	SOIL DESCRIPTION	SAMPLE TYPE	LABORATORY ANALYSES	● PID READING (ppmv) ●	COMPLETION NOTES	
0.2	ASPHALT Silty SAND (FILL) with gravel, brown, moist Silty CLAY (FILL)					91
.4	trace construction debris, brown, moist		BH211-SS1: Metals PAHs	• — • •<25	Bentonite	9
.6			PHCs			8
NVEST	G. METHOD: Geoprobe 420M G. DATE: February 25, 2021 D BY: RSC HOLE DIAM (mm): 102	Sample Notes	Macro Samp	o Core Iler		

		PGL		BORE)	BOREHOLE	NO
		rat consutants Iriginate Developments Inc. 156-164 Bathurst St. & 623-627 Richmond St. West, Toronto, C		GL PROJEC		BH212		
DEPTH (m)	SOIL TYPE	SOIL DESCRIPTION	SAMPLE TYPE	LABORATORY ANALYSES	● PID READING (ppmv) ●	WELL	COMPLETION NOTES	ELEVATION (m)
0.2		TOPSOIL Clayey SILT (FILL) with rock fragments, grey, moist		BH212-SS1: Metals PAHs PHCs	<25			90.2 90.0
0.6		Silty CLAY (FILL) trace construction debris, brown, moist		BH212-SS2	■ <25		Bentonite	89.8 89.6 89.6

PGL MULTI-TEST VAPOR LOG 2015 5660-03.GPJ PGL CANADA 2015.GDT 4/22/21

		PGL	WELL F	RE	CORD)		WELL NO	D:
		al CONSULTANTS riginate Developments Inc.	PGL PROJECT NO: 566	0-03.	03			MW20	1D
		156-164 Bathurst St. & 623-627 Richmond St. West, Toronto, O	N SURFACE ELEVATION:	90.2	3 m				
DEPTH (m)	SOIL TYPE	SOIL DESCRIPTION		SAMPLE TYPE	LABORATORY ANALYSES	WATER LEVEL	WELL		ELEVATION (m)
PGL MULTI-TEST VAPOR LOG 2015 5660-03.GPJ PGL CANADA 2015.GDT 4/22/21 PGL MULTI-TEST VAPOR LOG 2015 5660-03.GPJ PGL CANADA 2015.GDT 4/22/11 PGL MULTI-TEST VAPOR LOG 2015 5660-03.GPJ PGL 2015.GDT 4/22/11 PGL MULTI-TEST VAPOR LOG 2015 5660-03.GPJ PGL 2015.GDT 4/22/11 PGL MULTI-TEST VAPOR LOG 2015 5660-03.GPJ PGL 2015.GDT 4/22/11 PGL MULTI-TEST VAPOR LOG 2015 5660-03.GPJ PGL 2015.GDT 4/22/11 PGL MULTI-TEST VAPOR LOG 2015 5660-03.GPJ PGL 2015.GPT 4/22/11 PGL MULTI-TEST VAPOR LOG 2015 5660-03.GPT 4/22/12 PGL MULTI-TEST VAPOR LOG 2015 5660-03.GPT 4/22/12 PGL MULTI-TEST VAPOR LOG 2015.GPT 4/24/12 PGL MULTI-TEST VAPOR LOG 2015.GPT 4/22/12 PGL MULTI-TEST VAPOR LOG 2015.GPT 4/24/12 PGL MULTI-TEST		Brick Pavers 50 mm SAND AND GRAVEL (FILL) some clay, some silt, brown, moist Clayey SILT (FILL) trace construction debris, brown, moist Silty CLAY some sand, trace gravel, brown, moist grey below 3.7 Silty SAND trace clay, trace gravel, grey, moist Silty CLAY grey, moist Weathered Shale End of borehole at 16.00 m Screened interval from 12.9 m to 15.9 m below surface. GW 9.33 mbgs (3/17/2021)			MW201D- SS3: Metals PAHs PHCs Metals PAHs PHCs			Roadbox, J-plug Silica Sand Bentonite Silica Sand 50mm 010 Slot PVC Slough	90.0 89.8 89.4 89.0 88.8 89.4 89.0 88.6 88.4 87.2 87.4 87.2 87.4 87.4 87.2 87.4 87.4 87.4 87.4 87.4 87.4 87.4 87.4
	ESTIC	6. METHOD: B37X Diamond Drill Sample N 6. DATE: February 22, 2021 BY: RSC HOLE DIAM (mm): 203	otes 🔀 Split Spoon						

// PGL	WELL RECORD			WELL NO	D:
CLIENT: Originate Developments Inc.	PGL PROJECT NO: 5660-03.03			MW20	1 S
PROJECT: 156-164 Bathurst St. & 623-627 Richmond St. West, Toronto, Of	SURFACE ELEVATION: 90.23 m				
(m) HLd HC SOIL DESCRIPTION		WATER LEVEL	WELL COMPLETION	COMPLETION NOTES	ELEVATION (m)
Brick Pavers 50 mm SAND AND GRAVEL (FILL) some clay, some silt, brown, moist Clayey SiLT trace construction debris, brown, moist Silty CLAY some sand, trace gravel, brown, moist Gray below 3.7m Gray below 3.7m End of borehole at 8.00 m Screened interval from 4.9 m to 7.9 m below surface. GW 7.77 mbgs (3/17/2021)				Roadbox, J-plug Silica Sand Bentonite Silica Sand 50mm 010 Slot PVC	90.0 89.8 89.6 89.4 89.2 89.0 88.8 88.6 88.4 88.2 88.0 87.8 87.6 87.4 87.2 87.0 86.8 86.6 86.4 86.2 86.0 85.8 85.6 85.4 85.2 85.0 84.8 85.6 85.4 85.2 85.0 84.8 84.6 83.4 83.6 83.4 83.6 83.4 83.6 83.4 83.6 83.4 83.6 83.4
INVESTIG. METHOD: B37X Diamond Drill Sample No	otes				
INVESTIG. DATE: February 22, 2021 LOGGED BY: RSC HOLE DIAM (mm): 203				Page 1 of 1	

THIS LOG IS FOR ENVIRONMENTAL PURPOSES ONLY.

4/22/2

\mathcal{D}		PGL		W	ELL RECORD)		WELL NO	D:
		riginate Developments Inc.		PGL PROJE	ECT NO: 5660-03.03			MW20	03
		156-164 Bathurst St. & 623-627 Richmond St. West, Toronto	, ON	SURFACE E	ELEVATION: 90.33 m				
DEPTH (m)	SOIL TYPE	SOIL DESCRIPTION	SAMPLE TYPE	LABORATORY ANALYSES	● PID READING (ppmv) ● ■ VAPOUR READING (ppmv) ■	WATER LEVEL	WELL COMPLETION	COMPLETION NOTES	ELEVATION (m)
0.2 0.4 0.6		Clayey SILT (FILL) trace gravel with rock fragments, trace roots, grey, dry to moist		MW203-SS1 : Metals PAHs PHCs	<25			Roadbox, J-plug Silica Sand	90.2 90.0 89.8
0.8 1.0 1.2 1.4				— — — — — — — MW203-SS2 : Metals PAHs PHCs	- ■<25				89.6 89.4 89.2 89.0
1.6 1.8 2.0 2.2		SAND (FILL) some gravel, brown, moist		MW203-SS3	■<25	•			88.8 88.6 88.4 88.2
2.4 2.6 2.8 3.0		Silty CLAY grey and brown, moist		MW203-SS4 : Metals PAHs PHCs	<25			Bentonite	88.0 87.8 87.6 87.4
3.2 3.4 3.6 3.8				MW203-SS5	■ <25				87.2 87.0 86.8 86.6
4.0 4.2 4.4 4.6		grey below 4m		MW203- SS6/Z002: VOCs					86.4 86.2 86.0 85.8
4.8 5.0 5.2									85.6 85.4 85.2 85.0
5.6 5.8 6.0									84.8 84.6 84.4 84.2
6.2 6.4 6.6 6.8								Silica Sand 50mm 010 Slot PVC	84.0 83.8 83.6 83.4
7.0 7.2 7.4 7.6						· ·			83.2 83.0 82.8 82.6
7.8 8.0 8.2 8.4									82.4 82.2 82.0
8.6 8.8 9.0 9.2		Silty SAND trace clay, trace gravel, grey, wet	-			•		Slough	81.8 81.6 81.4 81.2
9.4 9.6 9.8									81.0 80.8 80.6 80.4
			No	tes 🖂 Spli	it Spoon				
		6. DATE: February 24, 2021 BY: RSC HOLE DIAM (mm): 203							
		G IS FOR ENVIRONMENTAL PURPOSES ONLY.						Page 1 of 2	

PGL MULTI-TEST VAPOR LOG 2015 5680-03.GPJ PGL CANADA 2015.GDT 4/22/21

// PGL				WELL RECORD				WELL NO:		
ENVIRONMENTAL CONSULTANTS				PGL PROJECT NO: 5660-03.03				MW203		
CLIENT: Originate Developments Inc.										
PRO	JECT:	156-164 Bathurst St. & 623-627 Richmond St. West, Toronto,	SURFACE ELEVATION: 90.33 m							
DEPTH (m)	SOIL TYPE	SOIL DESCRIPTION	SAMPLE TYPE	LABORATORY ANALYSES	● PID READING (ppmv) ● ■ VAPOUR READING (ppmv) ■	WATER LEVEL	WELL	COMPLETION NOTES	ELEVATION (m)	
10.2 10.4 10.6 10.8 11.0 11.2 11.4 11.6 11.8 12.0 12.2 12.4 12.6 13.8 13.0 13.2 13.4 13.6 13.8 14.0 14.2 14.4 -14.6		Silty CLAY grey, moist Weathered Shale						Slough	80.2 80.0 79.8 79.6 79.4 79.2 79.0 78.8 78.6 78.4 78.2 78.0 77.8 77.6 77.4 77.2 77.0 76.8 76.6 76.4 76.2 76.0 75.8	
End of borehole at 14.60 m										

Screened interval from 4.9 m to 7.9 m below surface. GW 7.13 mbgs (3/17/2021)

// PGL				WELL RECORD				WELL NO:		
CLIENT: Originate Developments Inc.				PGL PROJECT NO: 5660-03.03				MW204		
		156-164 Bathurst St. & 623-627 Richmond St. West, Toronto, C	SURFACE ELEVATION: 90.5 m							
DEPTH (m)	SOIL TYPE	SOIL DESCRIPTION	SAMPLE TYPE	LABORATORY ANALYSES	● PID READING (ppmv) ● ■ VAPOUR READING (ppmv) ■	WATER LEVEL	WELL	COMPLETION NOTES	ELEVATION (m)	
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.8 6.0 6.2 6.4		ASPHALT Gravelly SAND (FILL) with construction debris, brown, moist Clayey SILT (FILL) brown, moist Silty CLAY some sand, trace gravel, brown, moist grey below 3.7m		MW204-SS1: Metals IPAHs IPHCs MW204-SS2: Metals IPHCs IPHCs MW204-SS3: MW204-SS3:	■ VAPOUR READING (ppmv) ■ <25 <25 <25 <25 <25			Roadbox, J-plug Silica Sand Bentonite	90.4 90.2 90.0 89.8 89.6 89.4 89.2 89.0 88.8 88.6 88.4 88.2 88.0 87.8 87.6 87.4 87.2 87.0 86.8 87.4 87.2 87.0 86.8 86.6 86.4 86.2 86.0 85.8 85.6 85.4 85.2 85.0 85.8 85.6 85.4 85.2 85.0 84.8 84.6 84.4 85.2	
6.4 6.6 7.0 7.2 7.4 7.6 7.8 8.0 8.2 8.4 8.6 8.8 9.0 9.2 9.4 9.6 9.8		with weathered shale below 8.5m						Slough	84.2 84.0 83.8 83.6 83.4 83.2 83.0 82.8 82.6 82.4 82.2 82.0 81.8 81.6 81.4 81.2 81.0 80.8 80.6	
INVESTIG. METHOD: B37X Diamond Drill Sample Notes Macro Core Sampler										
INVESTIG. DATE: February 25 - February 26, 2021										
LOGGED BY: RSC HOLE DIAM (mm): 203										

PGL MULTI-TEST VAPOR LOG 2015 5660-03.GPJ PGL CANADA 2015.GDT 4/22/21

		PGL		W	ELL RECORD)		WELL NO):
CLIE	ENT: C	rat consultants Iriginate Developments Inc. 156-164 Bathurst St. & 623-627 Richmond St. West, Toronto,			ECT NO: 5660-03.03			MW2	04
PRC		156-164 Balhuist St. & 623-627 Richmond St. West, Toronto,		SURFACE	ELEVATION: 90.5 m		1		
DEPTH (m)	SOIL TYPE	SOIL DESCRIPTION	SAMPLE TYPE	LABORATORY ANALYSES	● PID READING (ppmv) ● ■ VAPOUR READING (ppmv) ■	WATER LEVEL	WELL	COMPLETION NOTES	ELEVATION (m)
10.2 10.4 10.6 10.8 11.0 11.2 11.4 11.6 12.2 12.4 12.6 12.8 13.0 13.2 13.4 13.6 13.8 14.0 14.2 14.4 -14.6		Silty CLAY some sand, trace gravel, brown, moist <i>continued</i> <i>from previous page</i> Weathered Shale						Slough	80.4 80.2 80.0 79.8 79.6 79.4 79.2 79.0 78.8 78.6 78.4 78.2 78.0 77.8 77.6 77.4 77.0 76.8 76.6 76.4 76.2 76.0
		End of borehole at 14.60 m Screened interval from 4.9 m to 7.9 m below surface. GW 5.38 mbgs (3/17/2021)							

γ		PGL		W	ELL RECORD			WELL NO	D:
		al CONSULTANTS riginate Developments Inc.		PGL PROJE	ECT NO: 5660-03.03			MW2	05
		156-164 Bathurst St. & 623-627 Richmond St. West, Toronto,	ON	SURFACE I	ELEVATION: 90.18 m				
DEPTH (m)	SOIL TYPE	SOIL DESCRIPTION	SAMPLE TYPE	LABORATORY ANALYSES	● PID READING (ppmv) ● ■ VAPOUR READING (ppmv) ■	WATER LEVEL	WELL	COMPLETION NOTES	ELEVATION (m)
0.2 0.4 0.6		Clayey SILT (FILL) trace sand, brown, moist	X	MW205-SS1 : Metals PAHs PHCs	■ <25			Roadbox, J-plug Silica Sand	90.0 89.8 89.6
0.8 1.0 1.2 1.4 1.6				MW205-SS2 : Metals PAHs PHCs — — — — — —	■<25 -				89.4 89.2 89.0 88.8 88.6
1.8 2.0 2.2 2.4 2.6		Silty CLAY some sand, trace gravel, brown, moist	X		<25			Bentonite	88.4 88.2 88.0 87.8 87.6
2.8 3.0 3.2 3.4 3.6 3.8			/ \	PHCs					87.4 87.2 87.0 86.8 86.6 86.4
4.0 4.2 4.4 4.6 4.8 5.0									86.2 86.0 85.8 85.6 85.4 85.2
5.2 5.4 5.6 5.8 6.0									85.0 84.8 84.6 84.4 84.2
6.2 6.4 6.6 6.8 7.0						-		Silica Sand 50mm 010 Slot PVC	84.0 83.8 83.6 83.4 83.2
7.2 7.4 7.6 7.8 8.0						_			83.0 82.8 82.6 82.4 82.2
8.2 8.4 8.6 8.8		Silty SAND trace clay, trace gravel, grey, moist							82.0 81.8 81.6 81.4
9.0 9.2 9.4 9.6 9.8								Slough	81.2 81.0 80.8 80.6 80.4
INV	ESTIC	6. METHOD: B37X Diamond Drill Sample	No	tes 🖂 Spl	it Spoon				
		B. DATE: February 24, 2021 BY: RSC HOLE DIAM (mm): 203							
		G IS FOR ENVIRONMENTAL PURPOSES ONLY.						Page 1 of 2	

PGL MULTI-TEST VAPOR LOG 2015 5660-03.GPJ PGL CANADA 2015.GDT 4/22/21

11	PGL		W	ELL RECORD)		WELL NO	D:
CLIENT:	NTAL CONSULTANTS Originate Developments Inc. F: 156-164 Bathurst St. & 623-627 Richmond St. West, Toronto,	ON		CT NO: 5660-03.03			MW2	05
DEPTH (m) SOIL TYPE	SOIL DESCRIPTION	SAMPLE TYPE	LABORATORY ANALYSES	● PID READING (ppmv) ●	WATER LEVEL	WELL	COMPLETION NOTES	ELEVATION (m)
10.2 10.4 10.6 10.8 11.0 11.2 11.4 11.6 11.8 12.0 12.2 12.4 12.6	Silty CLAY with weathered shale, grey, moist						Slough	80.0 79.8 79.6 79.4 79.2 79.0 78.8 78.6 78.4 78.0 77.8 77.6 77.4

End of borehole at 12.80 m

Screened interval from 4.9 m to 7.9 m below surface. GW 7.43 mbgs (3/17/2021)

				۱۸		<u> </u>			
ENVIRO	DINMEN			VV		,		WELL NO	
		riginate Developments Inc.			ECT NO: 5660-03.03			MW2	06
PROJ	ECT:	156-164 Bathurst St. & 623-627 Richmond St. West, T			ELEVATION: 87.43 m				-
DEPTH (m)	SOIL TYPE	SOIL DESCRIPTION	SAMPLE TYPE	LABORATORY ANALYSES	● PID READING (ppmv) ● ■ VAPOUR READING (ppmv) ■	WATER LEVEL	WELL	COMPLETION NOTES	ELEVATION (m)
0.2			f					Roadbox, J-plug	87.2
0.4		GRAVEL (FILL) grey, dry		MW206-SS1: Grain Size	<25			Silica Sand	87.0
0.6 0.8		Silty CLAY trace rock fragments, trace sand, brown, moist		Metals PAHs					86.8 86.6
1.0				IPHCs				Bentonite	86.4
1.2 1.4				MW206-SS2/ Z003:	<25				86.2 86.0
1.6		grey below 1.5m some gravel at 1.65m		Metals PAHs					85.8
1.8 2.0		no sand below 1.8m		PHCs VOCs	<25				85.6 85.4
2.2				<u>\MW206-SS3</u>					85.2
2.4 2.6									85.0 84.8
2.8				wetais	■<25			Silica Sand	84.6
3.0 3.2				PAHs <u>PHC</u> s				50mm 010 Slot PVC	84.4 84.2
3.4					■<25	Ţ			84.0
3.6 3.8									83.8 83.6
4.0					 ■<25				83.4
4.2 4.4									83.2 83.0
4.6 4.8				 MW206-SS7	<25				82.8
5.0					-			Slough	82.6 82.4
5.2 5.4				MW206-SS8	<25			Ŭ	82.2 82.0
	<u>um</u>	End of borehole at 5.50 m					1600	1	02.0
		Screened interval from 1.5 m to 4.6 m below su	rface						
		Borehole located within the basement of Site	1400.						
		address							
		GW 3.48 mbgs (3/17/2021)							
		1							
		-	Sample Not	es 💌 Mao San	cro Core npler				
		G. DATE: February 24, 2021 BY: RSC HOLE DIAM (mm): 102							

THIS LOG IS FOR ENVIRONMENTAL PURPOSES ONLY.

Borehole Logs by Terrapex Environmental

	PGL Environmental Consultants SW Corner of Richmond and Bathurst			gering and S BINEER: VN		oon Sampling		B	Н	No	.: BH201MD
	I: Toronto, Ontario			833784.86		V. (m) 90.23 TING: 628704	.11	-			D:: 21-014
SAMPLE T		N	CORI				-	SHEL			
G (m) G (m) G (m)	SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	Shear Strend (kPa) • 40 80 120 N-Value (Blows/300m 20 40 60	160 (m)	Water Content (%) PL W.C. LL 20 40 60 80		SAMPLE NO.	1	Well	1
	BRICK PAVERS 50 mm FILL, gravelly sand and clayey silt	0	90 -	1,7				IA	Γ		Borehole advanced with hollow stem augers.
	FILL firm to stiff, moist brown and black clayey silt trace brick fragments	- 0.5 - 1 - 1 - 1.5 - 1.5	89.5 - 89 - 89 - 89 - 88.5 -	8		20 21 17 16		1B 2 3	8		50 mm diameter monitoring well installed
		2 - 2.5 	88 - 	22				4	22		
	brow gre		87 -	15		22		6	15		
	very stiff to stiff moist firm SILTY CLAY	- - - - - - - - - - - - - - - - - - -	86 - 	14		15		7	14		
	firm SILTY CLAY some sand to sandy trace gravel (TILL)	- - - - - - - - - - - - - - - - - - -	84.5 - 	▲ 5 67		¹⁷		8	5		
		- - 7.5 - - - - - - - - - - - - - - - - - - -	82.5 -	6		19		9	6		
	dense, moist, grey SILTY fine SAND trace clay, trace gravel	- 9	81.5 - 	34		15 16		0A 0B	34		
	TERRAPEX			LOGGED B				DATE	: Fel	oruar	ry 22, 2021
	TENNAFEA			REVIEWED	BY: V	'N Page 1	of 2				

	PGL Environmental Consultants							Sampling					
	SW Corner of Richmond and Bathurst I: Toronto, Ontario	PROJE NORTH				_) 90.23					: BH201MD
SAMPLE T			CORII		+.00		ASTING AMIC (: 628704		IELB'		NO	SPLIT SPOON
GWL (m) STOR	SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	Shea 40 8 N (Blov	ar Stre (kPa) 30 120 I-Value vs/300	ngth 0 160 e 🔺 mm)	PL	Water Content (%) W.C. LL 40 60 80	AMPLE NO.	е туре		Well Construction	REMARKS
	dense, moist, grey SILTY fine SAND trace clay, trace gravel very dense SILTY CLAY (TILL) and weathered SHALE COMPLEX	- 10 - 10.5 - 11 - 11.5 - 12	79.5 - - - 79 -	47 40 -			10 14 12		11		47 40		
	grey weathered SHALE	- 12.5 - 13	77.5			100+ 100+			135	3 1	100+		TCR 85%
	grey SHALE with limestone interbeds slightly weathered moderately fractured	- 13.5 - 14 - 14.5 - 15.5 - 15.5	76.5 - 						15				RQD 61% Unconfined compressive strength at 13.7 m depth is 53.7 MPa. TCR 100% RQD 93%
	END OF BOREHOLE												
	TERRAPEX		I	LOGO						TE:	Febr	uary	/ 22, 2021
				REVI	EWEI	D BY:	VN	Page 2	of 2				

	PGL Environmental Consultants	METHO		_	-							D			. DU204MC
	F: SW Corner of Richmond and BathurstN: Toronto, Ontario	PROJE NORTH						EV. (m) STING:			11				D:: 21-014
SAMPLE			CORII					MIC C		104.		HELE		// 140	
TOBMYS LOS (m)	SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	S 40 (E	hear Sti (kPa) 80 1 N-Val Blows/30	rengt a) <u>20 1</u> ue 00mr	th I60 ▲ n)	PL	Water Conten (%) W.C.	lt LL	SAMPLE NO.	ш	1	Well	1
	END OF BOREHOLE	- 0.5 - 0.5 - 1 - 1.5 - 2.5 - 3 - 3.5 - 4 - 4.5 - 5.5 - 6 - 6.5 - 7 - 7.5	Image: state of the state	200								Sp Sp	45		Borehole advanced with hollow stem augers. 50 mm diameter monitoring well installed.
	TERRAPEX				GGED				_	ILLIN ge 1 c		TE:	Feb	oruar	ry 23, 2021

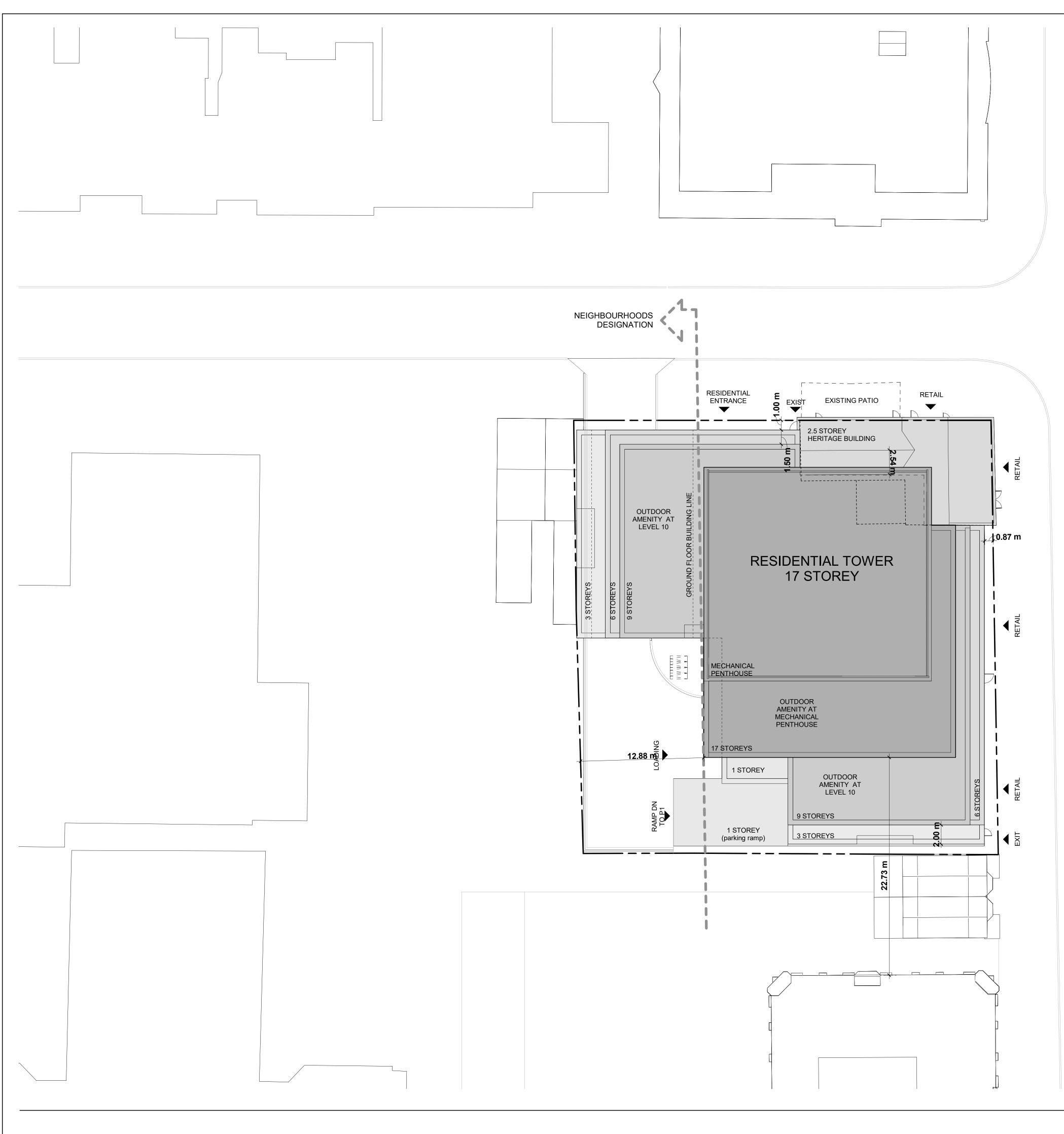
		METHC		-	-		-								
		PROJE NORTH					-		(m) 90	0.18 28723.9					D:: 21-014
SAMPLE T			CORII		1010.		-		CON		-	ELB			SPLIT SPOON
TOBWAS TIOS G (m)	SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	4	Shear (k 0 80 N-\ Blows 0 40	120 /alue /300r	160 ▲ nm)		Wa Cont (% PL W.	tent 5)	SAMPLE NO.	SAMPLE TYPE	SPT(N)	Well Construction	1
	FILL stiff to very stiff, moist dark brown and grey clayey silt occasional pockets of crusher run limestone and gravelly sand	-0.5	90 - 		116						1A 1B 2 3A 3B 4A 4B 5A 5B		24 9 16 17		Borehole advanced with hollow stem augers. 50 mm diameter monitoring well installed.
	stiff to firm, moist, grey SILTY CLAY some sand to sandy trace gravel (TILL)	-4.5 -5.5 -6.5 -7 -7.5	86.5 - 86 - 86 - 85.5 - 85.5 - 85.5 - 85.5 - 85.5 - 85.5 - 84.5 - 84								6 7 8 9 10		9 8 4 6 4		
PICES	END OF BOREHOLE	-					Y: E	M							y 23, 2021
	TERRAPEX						BY:			Page 1 of			rep	nual	y 23, 2021

				gering and S SINEER: VN		poon Samplin EV. (m) 90.33	-	В	H	No	.: BH203M
LOCATION	: Toronto, Ontario	NORTH	IING: 4	833809.60		STING: 62872					D.: 21-014
SAMPLE T	YPE AUGER DRIVEN	Ν	CORI			MIC CONE		SHEL	BY		SPLIT SPOON
GWL SVNBOL GWL (m)	SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	Shear Streng (kPa) 40 80 120 N-Value (Blows/300m 20 40 60	160 ▲ m)	Water Content (%) PL W.C. Ll 20 40 60		SAMPLE NO. SAMPLE TVDE	SPT(N)	Well	REMARKS
	TOPSOIL 100 mm	0						A			Borehole advanced with
	FILL stiff, moist, brown and grey clayey silt occasional shale fragments occasional pockets of crusher run limestone	-0.5	90 - 	15 9 25		17 7 15		2 3A	9		hollow stem augers. 50 mm diameter monitoring well installed in straight augered borehole adjacent to sampled borehole.
	brown grey	- 3.5	88 - 	8		18		5	14		
	9197	- - - - - - - - - - - - - - - - - - -	86.5 -	7		16		6	7	:	
	stiff to firm, moist SILTY CLAY some sand to sandy trace gravel (TILL)	- - - - - - - - - - - - - - - - - - -	85.5 - - 85 - - - - - - - - - - - - - - - - - - -	▲ 3				7	3		
		- 6.5	84 - 83.5 - 83.5 -	▲ 7		3		8	7		
		- 7.5 - - - - - - - - - - - - - - - - - - -	82.5 - 	8		20		9	8		
	dense, wet, grey SILTY fine SAND trace clay, trace gravel	- - - - - - - - - - - - - - - - - - -	81.5 - - 81 - - - - - - - - - - -	40		17		10	40		
	TEDDADEV			LOGGED B	Y: JC	; DRILI		ATE	Feb	oruar	ry 24, 2021
	TERRAPEX			REVIEWED	BY:	VN Page	1 of 2				

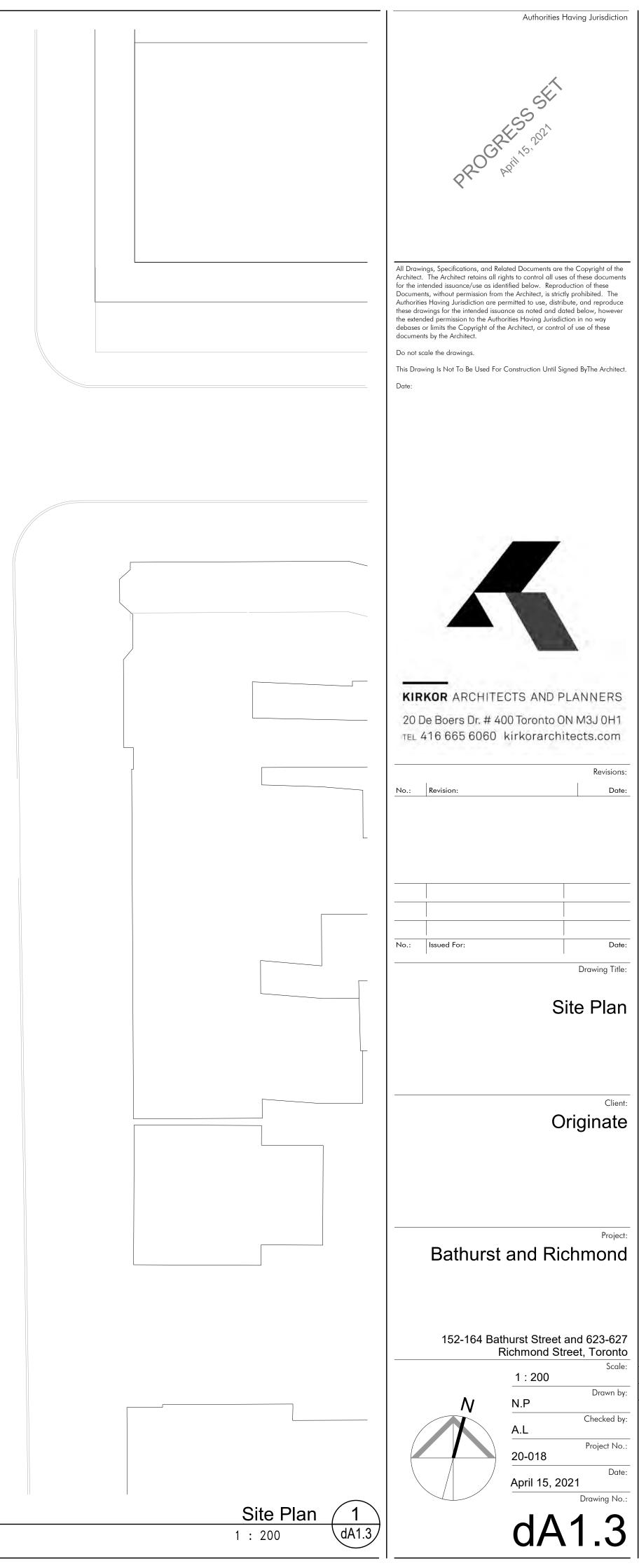
LOCATION: Toronto, Ontario NOR SAMPLE TYPE AUGER DRIVEN GWL SOIL DESCRIPTION dense, wet, grey SILTY fine SAND, trace clay, trace gravel hard SILTY CLAY (TILL) and weathered SHALE COMPLEX	(m) Haad 10 10.5 11.5	CT ENG NG: 44 CORIN (iii) NOLLEY 313 80 79.5 79.5 79.5 78.5	83380 NG She 40 (Blo	09.60 ear Stre (kPa) 80 12 N-Valu ows/300 40 60	DY ngth 0 160 e A Imm)		PL \ 20 4(6287 NE Vater ontent (%) W.C.	27.77	7 P She		SPT(N) A		:: BH203M :: 21-014 SPLIT SPOON REMARKS
SAMPLE TYPE AUGER DRIVEN	(E) HLAHO 10 10.5 11 11.5 12	CORIN (iii) NOLLEY 313 80 79.5 79.5 79.5	NG She 40 (Blo 20	ear Stre (kPa) 80 12 N-Valu bws/3000 40 60	DY ngth 0 160 e (mm)		PL \ 20 4(NE Vater ontent (%) N.C.		SAMPLE NO.		SPT(N) K		SPLIT SPOON
SWL Image: Solid structure Solid structure Image: Solid structure	(E) HL H H H H H H H H H H H H H H H H H H	(ii) NOLLAN BEREVATION ELEVATION 79.5 - - - - - - - - - - - - -	She 40 (Blo 20	80 12 N-Valu bws/300 40 60	0 160 0 160 0 mm))	V Cc PL \ 20 40	Vater ontent (%) N.C.		SAMPLE NO.	SAMPLE TYPE	SPT(N)	Well Construction	
A SILTY fine SAND, trace clay, trace gravel hard SILTY CLAY (TILL) and weathered SHALE COMPLEX	10.5 11 11.5 12	79.5								11				
hard SILTY CLAY (TILL) and weathered SHALE COMPLEX	11 11.5 12	79.5	39	,		1:	2			11		20		
- 12	12.5	78 -			100	9)+				12		39 100+		
signify weathered moderately fractured	13.5	77.5 - 77 - 76.5 - 76 -								13				TCR 100% RQD 46% TCR 100% RQD 94% Shale unconfined compressive strength at 13.5 m depth is 17.1 MPa.
END OF BOREHOLE														
TERRAPEX	TERRAPEX						 	-	LING		E: F	Feb	ruary	/ 24, 2021

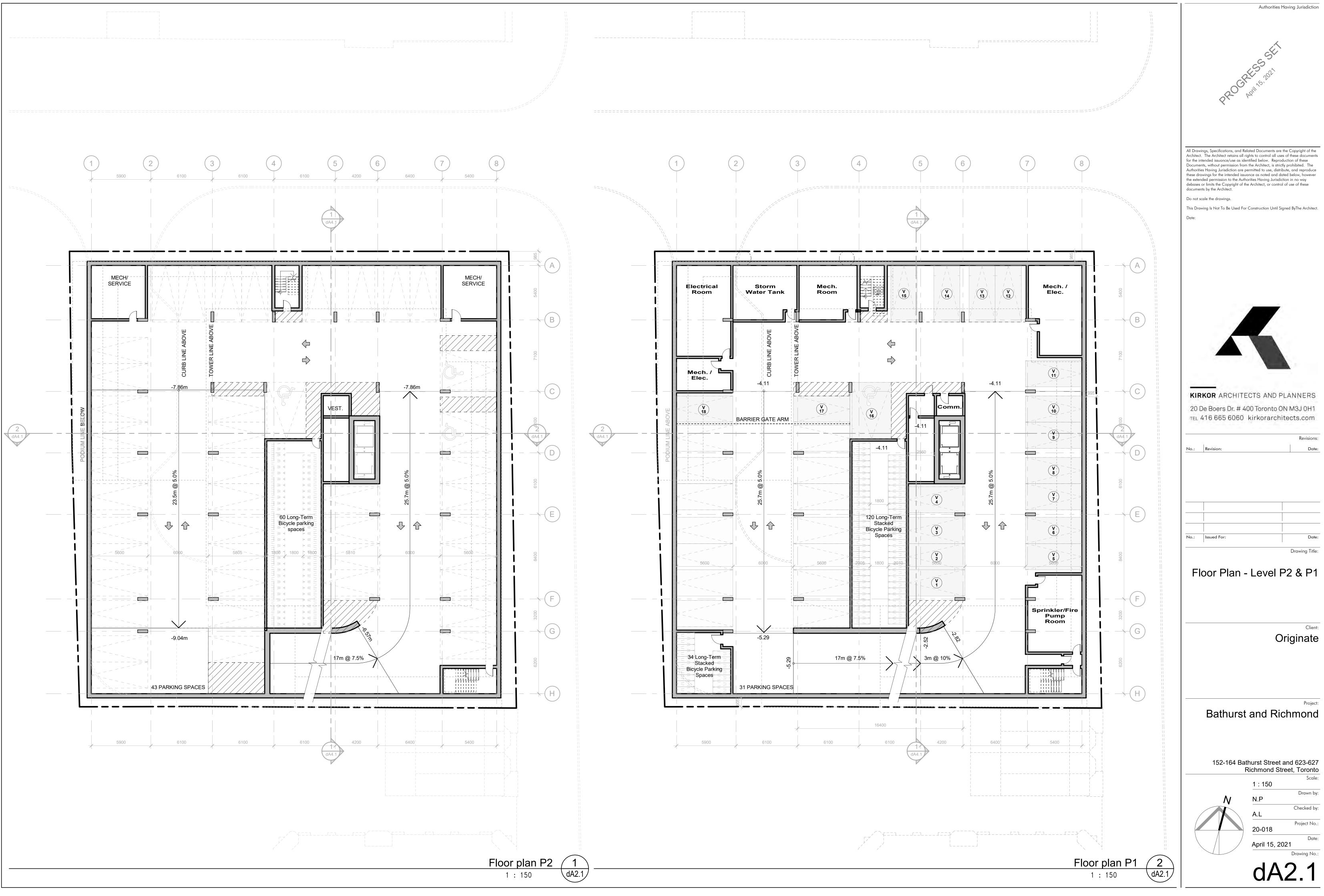
PROJECT:	GL Environmental Consultants SW Corner of Richmond and Bathurst			gering and Sp SINEER: VN		000n Samplin V. (m) 90.50	-				lo.: BH204M
	: Toronto, Ontario			833822.21		STING: 62870	_				NO.: 21-014
SAMPLE TY SWL VMBOL (m) SOL SYMBOL	AUGER DRIVEN	DEPTH (m)	CORI (m) (m)	Shear Strend (kPa) • 40 80 120 N-Value (Blows/300m	nth 160 ▲ m)	MIC CONE Water Content (%) PL W.C. L			SAMPLE TYPE		
	ASPHALTIC CONCRETE 50 mm FILL moist, brown and black gravelly sand with brick pieces and ash	0	90.5 90.7		80	20 40 60 14	80	<u>رم</u>	\top	33	Borehole advanced wit hollow stem augers. 50 mm diameter monitoring well installer
	FILL firm, moist, brown clayey silt	- 1 - 1 	89.5 -	▲ 6		23 30		2		6	
		-2	88.5 -	6		22		3A 3B		6	
		- 2.5 - - - 3	88 -	21		18		4		21	
	brow gre		87 -	19		15		5		19	
	very stiff to firm, moist SILTY CLAY	- 4.5 - 4.5 	86.5 -	▲ 11 ▲ 11		18		6 7		11	
	some sand to sandy trace gravel (TILL)	- 5.5	85 -								
		- 6.5	84 -	▲ 5		18		8		5	
		- 7 - - - 7.5	83.5 -			20					
		8.5	82.5 -	▲ 7				9		7	
	hard SILTY CLAY (TILL) and weathered SHALE COMPLEX	- - - - - - - - - - - - - - - - - - -	81.5 -	24		20		10		24	
	TERRAPEX	<u> </u>	<u> </u>	LOGGED BY			LING	DAT	E: F	-ebr	uary 26, 2021

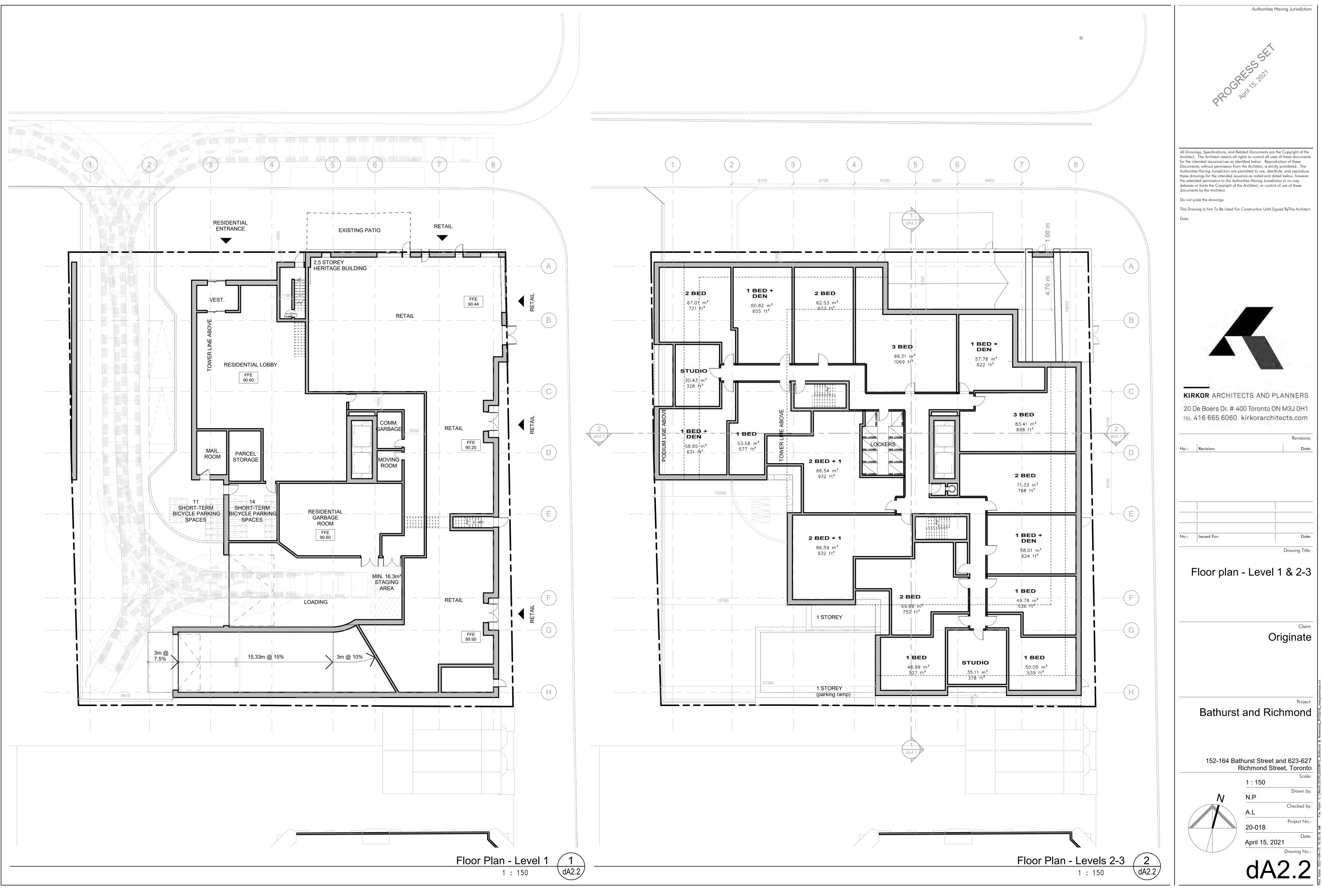
PROJECT: SWI Commer of Richard and Balmust PROJECT ENDINEE: VM ELEV (m) 90.50 PH No.: 21-014 LOCATION: Torono, Ontario NORTHING: 4833822 21 EASTING: 628701.34 PROJECT NO.: 21-014 SMUELT YPE LOCATION: 4833822 21 EASTING: 628701.34 PROJECT NO.: 21-014 With the state of th		METHO				Split S	spoon	Sampl	ing	\square				
SAMPLE TYPE AUGER DRIVEN CORING DUMANG COME SHELEY SPLIT SPC 001. 019 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9						_								
OWN OWN SOIL DESCRIPTION E E E E E E Show E E Show E Show E E Show					2.21				701.5				T NO.	
-10 805- -105 80- 105 80- -105 80- 110 78.5- -43 -11 11 43 115 79- -122 78- -10 11 11 43 112 78.5- -125 78- -10 11 11 11 43 112 78.5- -125 78- -10 -11 13 11 00 grey weathered 135 77- -10 -10 -11 13 10 -11 10 -11 10 -11 10 -11 10 -11 11 10 -11 11	SOIL		-	Shea 40 8 N (Blow	80 120 I-Value vs/300r	160 mm)	PI	Water Content (%) L W.C.	LL				Well Construction	
grey weathered 13 77.5 100+1 13 100+1 113 77.5 14 76.5 100+1 14 100+1 14.5 76 100+1 14 100+1 14 100+1 END OF BOREHOLE 14.5 76 100+1 14 100+1 14 100+1	hard SILTY CLAY (TILL) and weathered SHALE COMPLEX	- 10.5	80 	43			9 • 10							
	SHALE	- 13 - 13.5 - 14	77.5											
LOGGED BY: JC DRILLING DATE: February 26. 2021														
TERRAPEX REVIEWED BY: VN Page 2 of 2	TERRAPEX		1	-							ΓE:	Feb	ruary	[,] 26, 2021

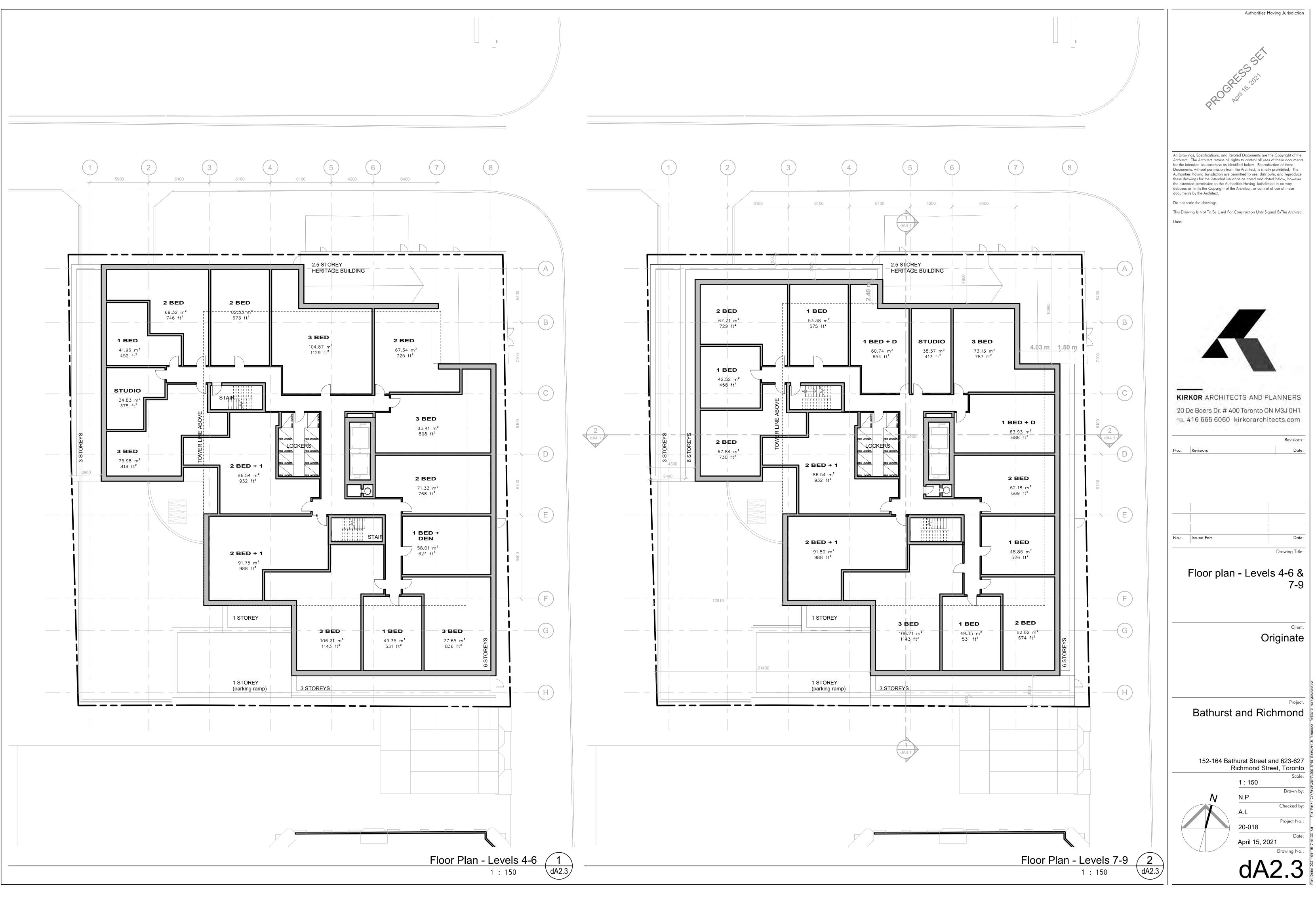

	GL Environmental Consultants SW Corner of Richmond and Bathurst			gering and S SINEER: VN		oon Sampling V. (m) 90.18		Bł	4 1	10	.: BH205M
	: Toronto, Ontario	NORTH	IING: 4	833805.47		TING: 628711.8					0.: 21-014
SAMPLE TY	YPE AUGER DRIVEN		CORI	NG			_	ELB	Y		SPLIT SPOON
G (m) G (m) G (m)	SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	Shear Stren (kPa) 40 80 120 N-Value (Blows/300m 20 40 60	160 m)	Water Content (%) PL W.C. LL 20 40 60 80	SAMPLE NO.	SAMPLE TYPE	SPT(N)	Well Construction	REMARKS
	FILL stiff to firm, moist, brown clayey silt occasional sand pockets	- 0.5	90 - 89.5 - 89 -	9 ▲ 7 ▲ 10			1 2 3A		9 7 10		Borehole advanced with hollow stem augers. 50 mm diameter monitoring well installed
	brc	- 2 - 2.5 - 3	88 - 87.5 - 87 -	▲ 12 ▲ 12			3B 4 5		12		
	g stiff to firm, moist SILTY CLAY		86.5 -	▲ 5 ▲ 8			6		12 5 8		
	some sand to sandy trace gravel (TILL)	- - - - - - - - - - - - - - - - - - -	85 - 84.5 - 84 - 83.5 -	▲ 6			8		6		
		- 7.5	83 - 82.5 - 82 -	•6			9		6		
	very dense, moist, grey SILTY fine SAND trace clay, trace gravel	- 9.5	81.5 - 81 - 81 - 80.5 -	63			10		63		
	TERRAPEX			LOGGED B	Y: JC	DRILLING	DA.	TE:	Feb	ruar	y 24, 2021

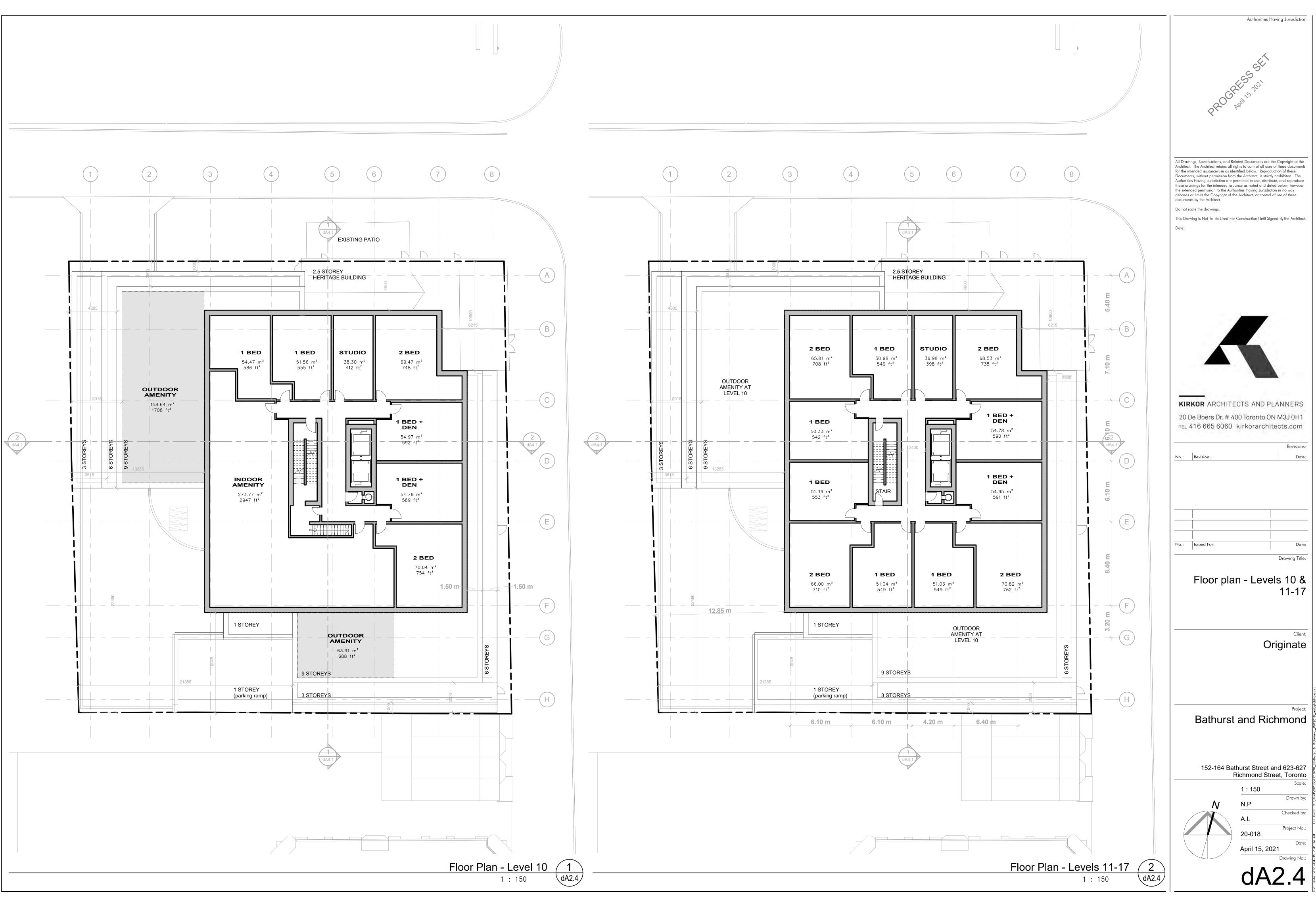
CLIENT: F	PGL Environmental Consultants	METHO	D: Aug	gering	and	Spl	it Sp	boon Sa	ampl	ing				_	
		PROJE						EV. (m)							.: BH205M
		NORTH			05.47			STING:		711.8	-			T NO	D.: 21-014
GWL (m) SAMPLE T	AUGER DRIVEN	DEPTH (m)	CORII (m) NOILEVATION (m)	Sh 40 (Bl	ear Stro (kPa) 80 12 N-Valu ows/30	ength 20 16 Je Omm	ר ק <u>ס</u> ו)	Ca PL \	Vater ontent (%) W.C.	LL	SAMPLE NO.	SAMPLE TYPE	SPT(N)	Well Construction	SPLIT SPOON
	very dense, moist, grey SILTY fine SAND, trace clay, trace gravel	- 10		20	40 6	08	0	20 40	0 60	80	0	S	٥ ٥	\searrow	
	hard SILTY CLAY (TILL) and weathered SHALE COMPLEX	- 10.5	80		55 49						11		55		
	grey weathered SHALE END OF BOREHOLE		77.5 -			10	0+				13		100+	Ŵ	<u> </u>
1	TERRAPEX				GED				-			TE:	Feb	ruary	y 24, 2021
					/IEWE	ם ח	· I. V	/ 1 N	1-aŭ	ge 2 of	۷				

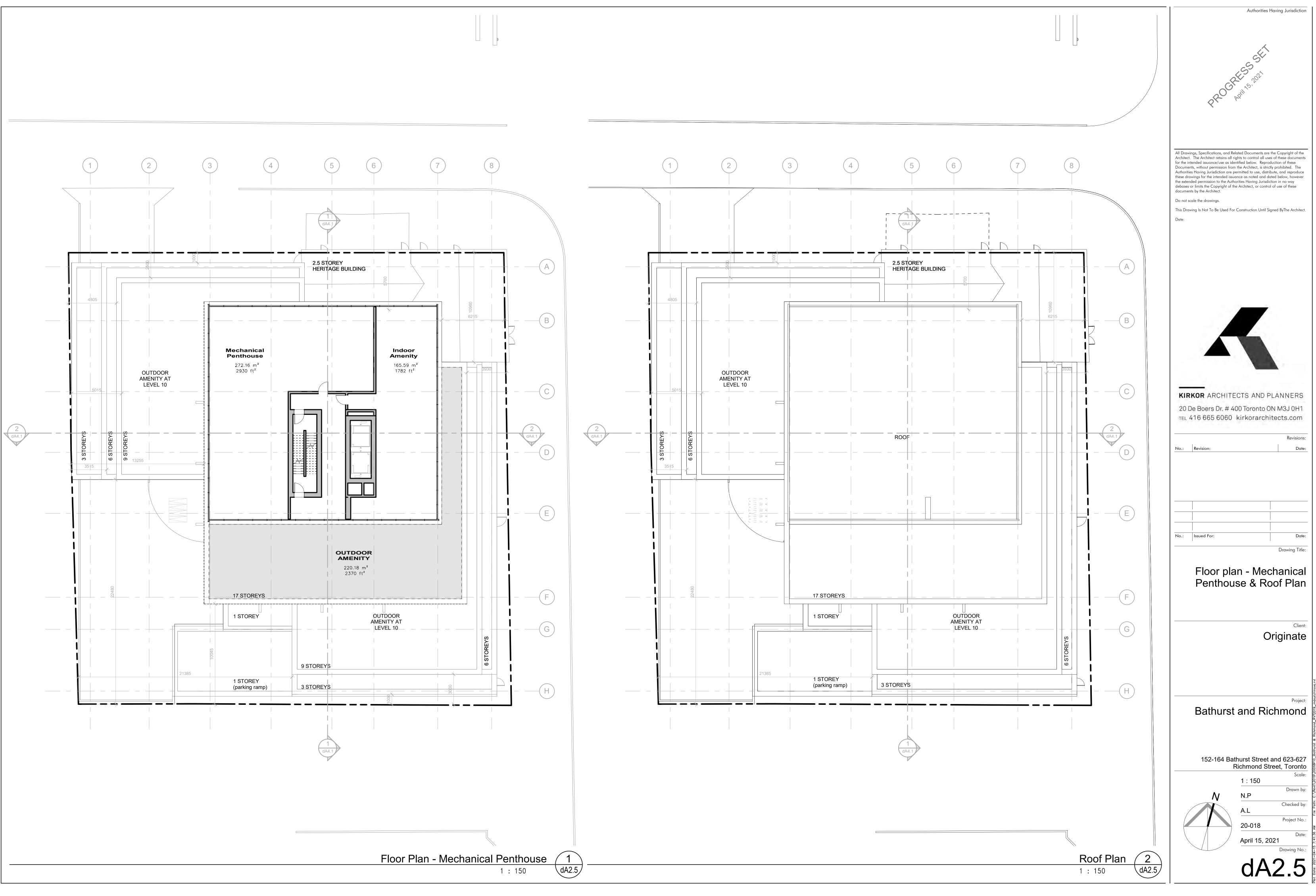

Appendix 2


Proposed Development Plans

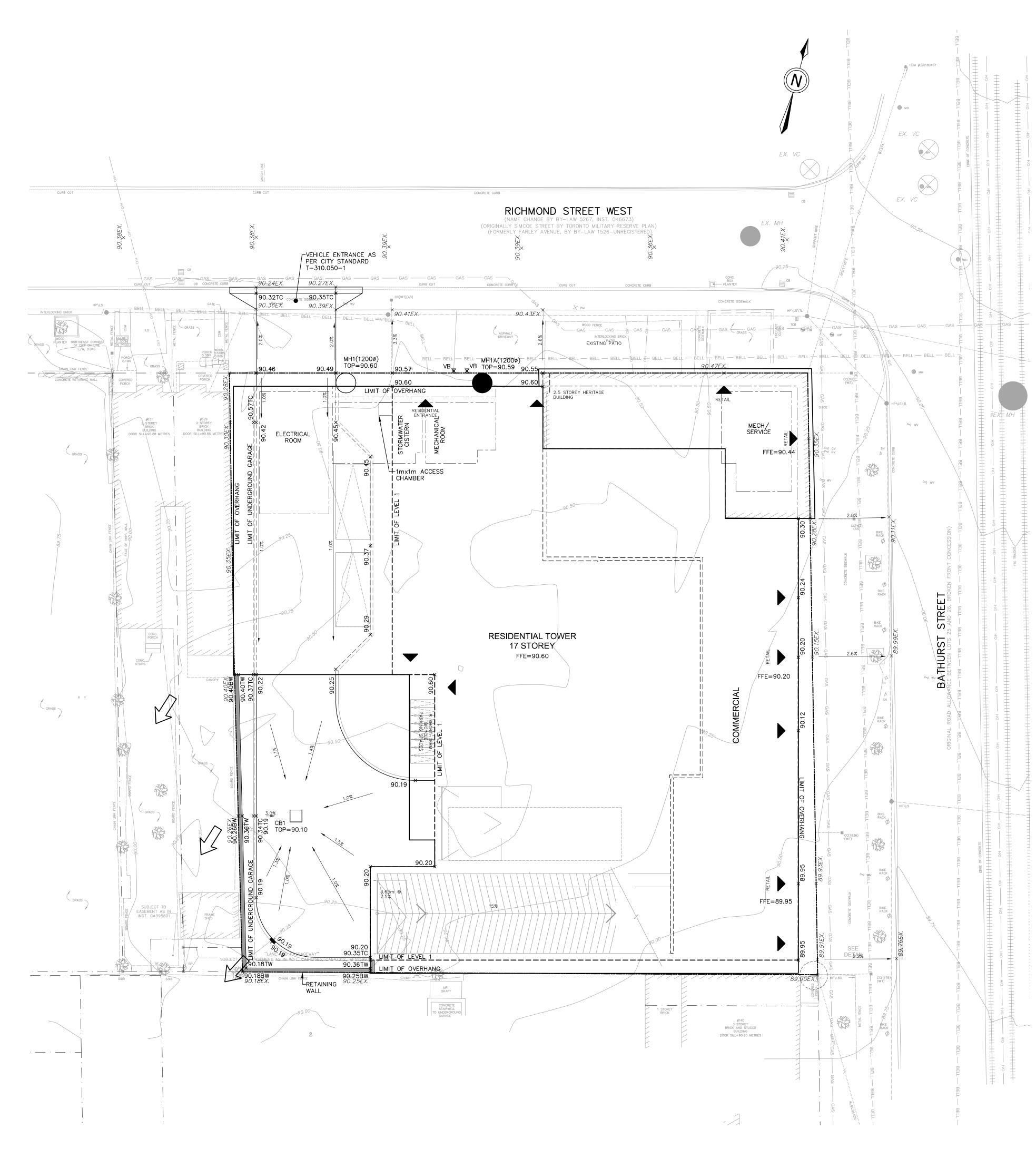



.2020.02.26





.2020.02.


				1	7 STOREY RESIDENTIAL					
			MECHANICAL PENTHOUSE		ELEVATOR LOBBY		(DUTDOOR		
									ł	
		-								
			RESIDENTIAL				STAIRS			
			RESIDENTIAL		ELEVATOR LOBBY					OUTDOOR AMENITY
	I									
						-				
			RESIDENTIAL					RESIDE		
S	HMOND TREET VEST		RETAIL		ELEVATOR LOBBY	RE	SIDENTIAL GARBAGE	LOADIN	۱G	PAR R4
		UNDER	GROUND PARKING P1	T. VEST.	ELEVATOR LOBBY	UNDERGF	ROUND PARKIN	G P1		R/
		UNDEF	RGROUND PARKING P2	VEST.	ELEVATOR LOBBY	UNDERG	ROUND PARKI	NG P2		
.2020.02.26										

Appendix 3

Site Grading Plans (existing and proposed Site elevations)

GRADING

- 1. ALL AREA GRADING AND RESULTING DRAINAGE PATTERNS SHALL NOT ADVERSELY AFFECT ADJACENT LANDS.
- 2. THE STORM DRAINAGE SHALL BE SELF-CONTAINED WITHIN THE SUBJECT PROPERTY UNTIL IT CAN BE DISCHARGED, REUSED, INFILTRATED AND/OR EVAPOTRANSPIRED IN A MANNER ACCEPTABLE TO THE CITY.
- 3. MINIMUM GENERALLY ACCEPTED GRADIENT 2.0 PERCENT.
- 4. MAXIMUM GENERALLY ACCEPTED GRADIENT 5.0 PERCENT. 5. MAXIMUM ACCEPTABLE SLOPE 3 PARTS HORIZONTAL TO 1 PART VERTICAL.
- 6. NO ALTERATION TO EXISTING BOUNDARY ELEVATIONS OR ADJACENT LANDS SHALL BE UNDERTAKEN UNLESS WRITTEN AGREEMENT WITH THE ADJACENT PROPERTY OWNER IS OBTAINED AND SUBMITTED IN A FORMAT ACCEPTABLE TO THE CITY.
- 7. MINIMUM SWALE GRADIENT 2.0 PERCENT. 8. MINIMUM SWALE DEPTH - 150mm.
- 9. ALL SWALES OR DITCHES HAVING VELOCITY IN EXCESS OF 1.5m/s SHALL BE DESIGNED TO INCORPORATE EROSION PROTECTION.
- 10. THE MINIMUM GRADIENT ON ANY DRIVEWAY SHALL BE 2.0 PERCENT.
- 11. THE MAXIMUM GRADIENT ON ANY DRIVEWAY SHALL BE 8.0 PERCENT.
- 12. ANY DISCREPANCIES BETWEEN THE SITE CONDITIONS AND THE DRAWINGS MUST BE REPORTED TO THE CONSULTING ENGINEER/CITY PRIOR TO COMMENCEMENT OF CONSTRUCTION AND APPROPRIATE ACTION TAKEN TO THE SATISFACTION OF THE CITY OF TORONTO.
- 13. ALL SURVEY POINTS SHALL BE VERIFIED IN THE FIELD BY THE CONTRACTOR PRIOR TO CONSTRUCTION. ANY DISCREPANCIES BETWEEN THE DRAWINGS AND THE LAYOUT SHALL BE REPORTED TO THE CONSULTING ENGINEER AND THE CONSULTING ENGINEER SHALL NOTIFY THE CITY OF THE NECESSARY CHANGES.
- 14. ALL AREAS DISTURBED DURING CONSTRUCTION WITHIN THE CITY'S RIGHT OF WAY SHALL BE RESTORED TO ORIGINAL OR BETTER CONDITION. GRASSED AREAS SHALL BE PROVIDED WITH 100mm OF TOPSOIL AND SHALL BE SODDED AS PER T.S. 5.00 AND T.S. 5.10

ROAD RECONSTRUCTION:

- RECONSTRUCTION OF DRIVEWAY ENTRANCES SHALL BE ACCORDING TO T-310.050-8.
- . LIMITS OF SIDEWALK / CURB RECONSTRUCTION ARE APPROXIMATE, ACTUAL LIMITS ARE TO BE CONFIRMED IN THE FIELD BY THE CONTRACT ADMINISTRATOR.
- CHAINAGE IS ESTABLISHED FROM THE CENTRELINE OF CONSTRUCTION AND GUTTER GRADES ARE CALCULATED ALONG THE GUTTER LINE.
- 4. HEIGHT OF CURB FACES MAY VARY ALONG LENGTH OF GUTTER, AS SHOWN ON PROFILE, OR TO BE CONFIRMED IN THE FIELD. ADJUST ALL STRUCTURES (MAINTENANCE HOLES, CATCH BASINS, ETC.) TO SUIT NEW DESIGN ELEVATIONS INCLUDING BREAKING DOWN AND REMOVAL OF PORTION OF TOP OF STRUCTURES TO
- ALLOW FOR MINIMUM 150 MM ADJUSTMENTS. ALL CURB SHALL BE CONSTRUCTED WITH A LEDGE AT THE BACK OF THE CURB TO FACILITATE FUTURE SIDEWALK
- CONSTRUCTION. 7. FULL DEPTH SAW-CUTS ARE REQUIRED AT CONSTRUCTION LIMITS OF EXISTING CURB, SIDEWALK AND PAVEMENT UNLESS OTHERWISE SHOWN.
- 8. SAW CUT EXISTING PAVEMENT, SIDEWALK, CURB, GUTTER, DRIVEWAYS, WALKWAYS, ETC. AT CONSTRUCTION LIMITS TO PROVIDE A CLEAN JOINT FOR THE PROPOSED WORK.
- CONSTRUCT PEDESTRIAN SIDEWALK RAMPS WITH TACTILE WALKING SURFACE INDICATORS ACCORDING TO T-310.030-7, T-310.030-8, T-310.030-9, T-310.030-10 AND T-310.030-11.
- 10. EXISTING ENTRANCE RAMPS TO BE RE-INSTATED. VEHICULAR SIDEWALK RAMP SHALL BE ACCORDING TO T-310.050-1.
- 11. ADJUSTMENT OF APPROACHES, WALKWAYS, AND STEPS MAY BE REQUIRED. LIMITS ARE TO BE DETERMINED IN THE FIELD BY THE CONTRACT ADMINISTRATOR.
- 12. EXISTING ASPHALT THICKNESS MAY VARY, TAPER TO MATCH EXISTING AT CONSTRUCTION LIMITS (MINIMUM 2.0m).
- 13. FILTER FABRIC TO BE PLACED UNDER GRATES ON ALL CATCHBASINS TO TRAP SEDIMENT. SILT TRAPS ARE TO BE CLEANED REGULARLY AND ARE NOT TO BE REMOVED UNTIL SUCH TIME AS THE CURBS ARE CONSTRUCTED AND THE BOULEVARDS ARE SODDED OR BACKYARDS GRADED AND FILTER FABRIC FOR SILT CONTROL TO BE TERRA FIX 270R OR APPROVED FOUNDALENT

APPROVED EQUIVALENT.

CONSTRUCTION NOTES:

- ALL AREAS DISTURBED DURING CONSTRUCTION WITHIN THE CITY'S RIGHT-OF-WAY SHALL BE RESTORED TO ORIGINAL OR BETTER CONDITION AND TO THE SATISFACTION OF THE CONTRACT ADMINISTRATOR. GRASS AREAS SHALL BE TREATED WITH 100 MM OF TOPSOIL AND SHALL BE SODDED ACCORDING TO TS 5.00 AND TS 5.10.
- ALL EXISTING UTILITIES SHOWN ON DRAWINGS (PLAN AND PROFILE) ARE FOR REFERENCE PURPOSES ONLY. THE CONTRACTOR SHALL SATISFY THEMSELVES AS TO THE ACTUAL LOCATION AND DEPTH OF ANY UTILITY AND SHALL BE LIABLE FOR ALL OR ANY DAMAGE.
- 3 ANY DISCREPANCIES BETWEEN SITE CONDITIONS AND CONSTRUCTION DRAWINGS MUST BE REPORTED TO THE CITY PRIOR TO COMMENCEMENT OF CONSTRUCTION AND APPROPRIATE ACTION TAKEN TO THE SATISFACTION OF THE CONTRACT ADMINISTRATOR.
- 4 ALL SURVEY STAKE LAYOUT POINTS SHALL BE VERIFIED IN THE FIELD BY THE CONTRACTOR PRIOR TO CONSTRUCTION. ANY DISCREPANCIES BETWEEN THE DRAWINGS AND THE LAYOUT SHALL BE IMMEDIATELY REPORTED TO THE CITY.
- 5 ATTENTION IS DIRECTED TO THE POSSIBILITY OF EXISTING PRIVATE SPRINKLERS AND LIGHTING SYSTEMS WITHIN THE RIGHT-OF-WAY, WHICH ARE NOT SHOWN ON THE PLANS. LOCATING, WORKING AROUND AND PROTECTING THESE SYSTEMS SHALL BE COMPLETED AT NO EXTRA COST TO THE CITY.
- 6 ALL DIMENSIONS ARE EXPRESSED IN METRES (m) AND PIPE SIZES ARE EXPRESSED IN MILLIMETRES (mm) UNLESS OTHERWISE NOTED.
- 7 ALL MATERIAL FOR SEWER, FORCEMAIN, WATERMAIN, HYDRANTS AND APPURTENANCES, SHALL BE ACCORDING TO CITY OF TORONTO MATERIAL/MANUFACTURER SPECIFICATIONS AS REQUIRED BY CHAPTER 6, MATERIAL SPECIFICATIONS FROM DESIGN CRITERIA FOR SEWERS AND WATERMAINS MANUAL.
- 8 UTILITY SEPARATION SHALL BE ACCORDING TO APPENDIX 'D' OF THE CITY OF TORONTO DESIGN CRITERIA FOR SEWERS AND WATERMAINS MANUAL
- 9 SERVICE CONNECTIONS AND UTILITY CUTS MADE IN ROAD PAVEMENTS SHALL BE BACKFILLED WITH UNSHRINKABLE FILL ACCORDING TO TS 4.60.
- 10 AT ALL LOCATIONS WHERE THE PROPOSED WATERMAIN CROSSES UNDER OR ABOVE THE EXISTING SEWERS, OR UTILITIES, GRANULAR A BEDDING MATERIAL IS TO EXTEND FROM THE LOWER PIPE TO THE TOP OF THE UPPER PIPE. GRANULAR A TO BE COMPACTED TO MINIMUM 98% OF MAXIMUM DRY DENSITY.
- 11 CONTRACTOR TO PROVIDE ADEQUATE SUPPORT DURING CONSTRUCTION BETWEEN THE NEW WATERMAIN AND EXISTING GAS MAINS. MAINTAIN 300mm MINIMUM VERTICAL CLEARANCES BETWEEN THE NEW WATERMAIN AND EXISTING GAS MAINS LESS THAN 300mm IN DIAMETER. MAINTAIN 600mm MINIMUM VERTICAL CLEARANCE BETWEEN THE NEW WATERMAIN AND EXISTING GAS MAINS EQUAL TO OR GREATER THAN 300mm IN DIAMETER.
- 12 ALL EXISTING WATERMAINS AND SEWER PIPES LARGER THAN 300mm DIAMETER SHALL BE SUPPORTED ACCORDING TO DRAWING T-1007.01-4.

CONTACT INFORMATION:

- PRIOR TO COMMENCING ANY WORK WITHIN THE MUNICIPAL RIGHT-OF-WAY, THE CONTRACTOR SHALL APPLY FOR A ROAD OCCUPANCY PERMIT FROM THE CITY'S RIGHT-OF-WAY MANAGEMENT UNIT DISTRICT OFFICE.
- . ALL TTC TRAFFIC IS TO BE MAINTAINED DURING CONSTRUCTION OF THIS WATERMAIN, SEWER OR ROAD. IN ORDER TO CO-ORDINATE ALL DISRUPTIONS IN SERVICE, CONTRACTOR TO CONTACT MS EMILY ASSUNCAO 416-393-3302 AT LEAST 48 HOURS PRIOR TO COMMENCING CONSTRUCTION.
- 3. NOTIFY TORONTO WATER, WATER TREATMENT AND SUPPLY AT 416-397-0187 OR SEND AN E-MAIL MESSAGE TO TRUNKWATER@TORONTO.CA TWO WEEKS PRIOR TO EXCAVATION NEAR ANY TRANSMISSION WATERMAIN SO THAT A TORONTO WATER INSPECTOR MAY BE PRESENT
- 4. DURING THE CONSTRUCTION OF WATERMAIN / SERVICES OR SEWER , LATERALS CLOSE TO AN EXISTING TRANSMISSION WATERMAIN, CONTRACTOR TO NOTIFY TORONTO WATER AT 416-397-0187 AT LEAST 48 HOURS PRIOR TO CONSTRUCTION.

LEGISLATION, REGULATION AND CODES

- ALL WORK WITHIN THE CITY RIGHT-OF-WAY SHALL BE CONSTRUCTED ACCORDING TO THE LATEST CITY OF TORONTO STANDARD DRAWINGS AND SPECIFICATIONS. ONTARIO PROVINCIAL STANDARD DRAWINGS AND SPECIFICATIONS MAY, SUBJECT TO THE APPROVAL OF THE CITY OF TORONTO, BE USED WHERE NO CITY STANDARD OR SPECIFICATION IS AVAILABLE
- 2. ALL WORK SHALL BE COMPLETED ACCORDING TO THE CURRENT OCCUPATIONAL HEALTH AND SAFETY ACT AND REGULATIONS FOR CONSTRUCTION PROJECTS. THE GENERAL CONTRACTOR SHALL BE DEEMED TO BE THE CONSTRUCTOR AS DEFINED IN THE ACT.
- ALL TEMPORARY TRAFFIC CONTROL AND SIGNAGE DURING CONSTRUCTION SHALL BE ACCORDING TO THE CURRENT *ONTARIO TRAFFIC MANUAL* BOOK 7: TEMPORARY CONDITIONS FIELD EDITION.

ORIGINAL DATA SOURCE

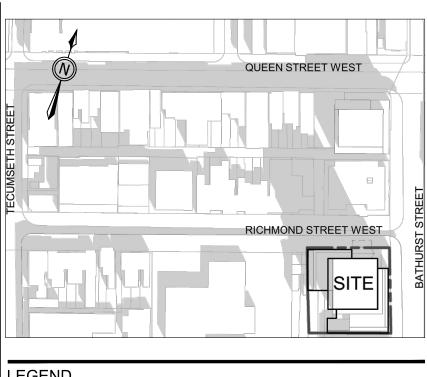
1. INFORMATION ABOUT EXISTING COMBINED SEWER AND WATERMAIN OBTAINED FROM THE CITY OF TORONTO FILES NO. 18-01304-004 RICHMOND STREET WEST DATED JANUARY 2018 AND NO. F-24 RICHMOND STREET WEST DATED JUNE 8, 1971.

DATE:

2. DMOG OBTAINED FROM CITY OF TORONTO FILE ID 28568. 3. LEGAL BOUNDARY OBTAINED FROM KRCMAR SURVEYORS LIMITED

TOPOGRAPHIC SURVEY. DATED JULY 20, 2020.

OTHER NOTES:


PRIOR TO COMMENCING ANY WORK WITHIN THE MUNICIPAL RIGHT-OF-WAY THE CONTRACTOR, DEVELOPER, OR CONSULTANT WILL OBTAIN ALL NECESSARY ROAD OCCUPANCY PERMITS FROM THE CITY'S RIGHT-OF-WAY MANAGEMENT UNIT CONTACT 416-392-7877.

1 DI TORONT

ENGINEERING and CONSTRUCTION SERVICES DIVISION

ACCEPTED TO BE IN ACCORDANCE WITH THE CITY OF TORONTO STANDARDS. THIS ACCEPTANCE IS NOT TO BE CONSTRUED AS VERIFICATION OF ENGINEERING CONTENT.

Manager, Development Engineering

EGEND

,90.00	PROPOSED ELEVATIONS
× ^{90.00EX}	EXISTING ELEVATIONS
x90.00TC	PROPOSED TOP OF CURB ELEVATIONS
2.0%	SLOPE
90.00	EXISTING CONTOURS
\bigcirc	PROPOSED STORM MANHOLE
	PROPOSED SANITARY MANHOLE
	EXISTING COMBINED MANHOLE
	PROPOSED STORM CATCHBASIN
X	PROPOSED VALVE & BOX
	PROPERTY LINE
	LIMIT OF OVERHANG
	LIMIT OF LEVEL 1
	LIMIT OF UNDERGROUND GARAGE
	PROPOSED CURB UNDER BUILDING
=======	PROPOSED RESIDENTIAL AND COMMERCIAL DIVISION

ELEVATION

ELEVATIONS SHOWN HEREON ARE GEODETIC AND ARE RELATED TO CITY OF TORONTO BENCH MARK No. CT556 HAVING AN ELEVATION OF 91.165 METRES.

DATE REV.No. **REVISION NOTE**

BATHURST AND RICHMOND

ENGINEERING + MANAGEMENT

P 905,709,5825 200 CACHET WOODS COURT, SUITE 204 MARKHAM, ON LOC 028 HUSSON.CA

SW1 **GRADING PLAN**

DATE: APRIL 8, 2021 SCALE: 1:150 PROJECT: 211176 DESIGNED BY: WS CHECKED BY: GKR DRAWN BY: WS CHECKED BY: GKR

Appendix 4

Laboratory Certificates of Analysis

Your Project #: 5660-03.03 Your C.O.C. #: 818096-01-01

Attention: Ryan Cook

Pottinger Gaherty Environmental Consultants Ltd 250 Water Street Unit 102 Whitby, ON CANADA L1N 0G5

> Report Date: 2021/03/26 Report #: R6570215 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C172290

Received: 2021/03/18, 15:33

Sample Matrix: Water # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Sewer Use By-Law Semivolatile Organics	1	2021/03/19	2021/03/22	CAM SOP 00301	EPA 8270 m
Biochemical Oxygen Demand (BOD)	1	2021/03/19	2021/03/24	CAM SOP-00427	SM 23 5210B m
Chromium (VI) in Water	1	N/A	2021/03/22	CAM SOP-00436	EPA 7199 m
Total Cyanide	1	2021/03/19	2021/03/19	CAM SOP-00457	OMOE E3015 5 m
Fluoride	1	2021/03/19	2021/03/19	CAM SOP-00449	SM 23 4500-F C m
Mercury in Water by CVAA	1	2021/03/23	2021/03/23	CAM SOP-00453	EPA 7470A m
Total Metals Analysis by ICPMS	1	N/A	2021/03/23	CAM SOP-00447	EPA 6020B m
E.coli, (CFU/100mL)	1	N/A	2021/03/18	CAM SOP-00552	MOE LSB E3371
Total Nonylphenol in Liquids by HPLC	1	2021/03/23	2021/03/24	CAM SOP-00313	In-house Method
Nonylphenol Ethoxylates in Liquids: HPLC	1	2021/03/23	2021/03/24	CAM SOP-00313	In-house Method
Animal and Vegetable Oil and Grease	1	N/A	2021/03/24	CAM SOP-00326	EPA1664B m,SM5520B m
Total Oil and Grease	1	2021/03/23	2021/03/24	CAM SOP-00326	EPA1664B m,SM5520B m
Polychlorinated Biphenyl in Water	1	2021/03/24	2021/03/25	CAM SOP-00309	EPA 8082A m
рН	1	2021/03/19	2021/03/19	CAM SOP-00413	SM 4500H+ B m
Phenols (4AAP)	1	N/A	2021/03/22	CAM SOP-00444	OMOE E3179 m
Total Kjeldahl Nitrogen in Water	1	2021/03/19	2021/03/23	CAM SOP-00938	OMOE E3516 m
Total PAHs (1)	1	N/A	2021/03/23	CAM SOP - 00301	
Mineral/Synthetic O & G (TPH Heavy Oil) (2)	1	2021/03/23	2021/03/24	CAM SOP-00326	EPA1664B m,SM5520F m
Total Suspended Solids	1	2021/03/20	2021/03/22	CAM SOP-00428	SM 23 2540D m
Volatile Organic Compounds in Water	1	N/A	2021/03/22	CAM SOP-00228	EPA 8260C m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Page 1 of 17

Your Project #: 5660-03.03 Your C.O.C. #: 818096-01-01

Attention: Ryan Cook

Pottinger Gaherty Environmental Consultants Ltd 250 Water Street Unit 102 Whitby, ON CANADA L1N 0G5

> Report Date: 2021/03/26 Report #: R6570215 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C172290

Received: 2021/03/18, 15:33

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Total PAHs include only those PAHs specified in the sewer use by-by-law.

(2) Note: TPH (Heavy Oil) is equivalent to Mineral / Synthetic Oil & Grease

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Deepthi Shaji, Project Manager Email: Deepthi.Shaji@bureauveritas.com Phone# (905)817-5700 Ext:7065843

This report has been generated and distributed using a secure automated process.

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total Cover Pages : 2 Page 2 of 17

TORONTO SANITARY&STORM SEWER (100-2016)

BV Labs ID				PCL839		
Sampling Date				2021/03/17 14:00		
COC Number				818096-01-01		
	UNITS	San	Stm	MW204	RDL	QC Batcl
Calculated Parameters		•			•	•
Total Animal/Vegetable Oil and Grease	mg/L	150	-	<0.50	0.50	7254170
Inorganics		4	4		1	4
Total BOD	mg/L	300	15	<2	2	7255889
Fluoride (F-)	mg/L	10	-	0.56	0.10	7256372
Total Kjeldahl Nitrogen (TKN)	mg/L	100	-	2.8	0.10	7256922
рН	pН	6.0:11.5	6.0:9.5	7.88		7256391
Phenols-4AAP	mg/L	1.0	0.008	<0.0010	0.0010	7259063
Total Suspended Solids	mg/L	350	15	24	10	7258487
Total Cyanide (CN)	mg/L	2	0.02	<0.0050	0.0050	7257264
Petroleum Hydrocarbons						
Total Oil & Grease	mg/L	-	-	<0.50	0.50	7262504
Total Oil & Grease Mineral/Synthetic	mg/L	15	-	<0.50	0.50	7262512
Miscellaneous Parameters						
Nonylphenol Ethoxylate (Total)	mg/L	0.2	0.01	<0.005	0.005	7261321
Nonylphenol (Total)	mg/L	0.02	0.001	<0.001	0.001	7261318
Metals						
Chromium (VI)	ug/L	2000	40	<0.50	0.50	7254030
Mercury (Hg)	mg/L	0.01	0.0004	<0.00010	0.00010	7261315
Total Aluminum (Al)	ug/L	50000	-	180	4.9	7260231
Total Antimony (Sb)	ug/L	5000	-	1.1	0.50	7260231
Total Arsenic (As)	ug/L	1000	20	4.2	1.0	7260231
Total Cadmium (Cd)	ug/L	700	8	<0.090	0.090	7260231
Total Chromium (Cr)	ug/L	4000	80	<5.0	5.0	7260231
Total Cobalt (Co)	ug/L	5000	-	1.7	0.50	7260231
Total Copper (Cu)	ug/L	2000	40	1.9	0.90	7260231
Total Lead (Pb)	ug/L	1000	120	<0.50	0.50	7260231
Total Manganese (Mn)	ug/L	5000	50	430	2.0	7260231
Total Molybdenum (Mo)	ug/L	5000	-	20	0.50	7260231
Total Nickel (Ni)	ug/L	2000	80	3.5	1.0	7260231
Total Phosphorus (P)	ug/L	10000	400	<100	100	7260231
Total Selenium (Se)	ug/L	1000	20	<2.0	2.0	7260231
Total Silver (Ag)	ug/L	5000	120	<0.090	0.090	7260232
Total Tin (Sn)	ug/L	5000	-	1.7	1.0	7260231
RDL = Reportable Detection Limit						
OC Batch = Quality Control Batch						

QC Batch = Quality Control Batch

San,Stm: Toronto Sanitary and Storm Sewer Use By Law Guidelines, respectively. Referenced to Chapter 681

TORONTO SANITARY&STORM SEWER (100-2016)

BV Labs ID				PCL839		
Sampling Date				2021/03/17 14:00		
COC Number				818096-01-01		
	UNITS	San	Stm	MW204	RDL	QC Batc
Total Titanium (Ti)	ug/L	5000	-	7.2	5.0	726023
Total Zinc (Zn)	ug/L	2000	40	12	5.0	726023
Semivolatile Organics				-		-
Di-N-butyl phthalate	ug/L	80	15	<2	2	7257468
Bis(2-ethylhexyl)phthalate	ug/L	12	8.8	<2	2	725746
3,3'-Dichlorobenzidine	ug/L	2	0.8	<0.8	0.8	725746
Pentachlorophenol	ug/L	5	2	<1	1	725746
Phenanthrene	ug/L	-	-	<0.2	0.2	7257468
Anthracene	ug/L	-	-	<0.2	0.2	7257468
Fluoranthene	ug/L	-	-	<0.2	0.2	7257468
Pyrene	ug/L	-	-	<0.2	0.2	7257468
Benzo(a)anthracene	ug/L	-	-	<0.2	0.2	7257468
Chrysene	ug/L	-	-	<0.2	0.2	725746
Benzo(b/j)fluoranthene	ug/L	-	-	<0.2	0.2	725746
Benzo(k)fluoranthene	ug/L	-	-	<0.2	0.2	725746
Benzo(a)pyrene	ug/L	-	-	<0.2	0.2	725746
Indeno(1,2,3-cd)pyrene	ug/L	-	-	<0.2	0.2	725746
Dibenzo(a,h)anthracene	ug/L	-	-	<0.2	0.2	725746
Benzo(g,h,i)perylene	ug/L	-	-	<0.2	0.2	725746
Dibenzo(a,i)pyrene	ug/L	-	-	<0.2	0.2	725746
Benzo(e)pyrene	ug/L	-	-	<0.2	0.2	7257468
Perylene	ug/L	-	-	<0.2	0.2	725746
Dibenzo(a,j) acridine	ug/L	-	-	<0.4	0.4	7257468
7H-Dibenzo(c,g) Carbazole	ug/L	-	-	<0.4	0.4	7257468
1,6-Dinitropyrene	ug/L	-	-	<0.4	0.4	7257468
1,3-Dinitropyrene	ug/L	-	-	<0.4	0.4	7257468
1,8-Dinitropyrene	ug/L	-	-	<0.4	0.4	7257468
Calculated Parameters						
Total PAHs (18 PAHs)	ug/L	5	2	<1	1	7255014
Volatile Organics	+	4	<u>.</u>			4
Benzene	ug/L	10	2	<0.40	0.40	7256872
Chloroform	ug/L	40	2	<0.40	0.40	725687
1,2-Dichlorobenzene	ug/L	50	5.6	<0.80	0.80	725687
1,4-Dichlorobenzene	ug/L	80	6.8	<0.80	0.80	725687
RDL = Reportable Detection Limit		1				1

Page 4 of 17

BV Labs ID				PCL839		
Sampling Date				2021/03/17		
				14:00		
COC Number				818096-01-01		
	UNITS	San	Stm	MW204	RDL	QC Batch
cis-1,2-Dichloroethylene	ug/L	4000	5.6	<1.0	1.0	7256872
trans-1,3-Dichloropropene	ug/L	140	5.6	<0.80	0.80	7256872
Ethylbenzene	ug/L	160	2	<0.40	0.40	7256872
Methylene Chloride(Dichloromethane)	ug/L	2000	5.2	<4.0	4.0	7256872
1,1,2,2-Tetrachloroethane	ug/L	1400	17	<0.80	0.80	7256872
Tetrachloroethylene	ug/L	1000	4.4	<0.40	0.40	7256872
Toluene	ug/L	16	2	<0.40	0.40	7256872
Trichloroethylene	ug/L	400	7.6	<0.40	0.40	7256872
p+m-Xylene	ug/L	1400	4.4	<0.40	0.40	7256872
o-Xylene	ug/L	1400	4.4	<0.40	0.40	7256872
Total Xylenes	ug/L	1400	4.4	<0.40	0.40	7256872
PCBs						
Total PCB	ug/L	1	0.4	<0.05	0.05	7265276
Microbiological						
Escherichia coli	CFU/100mL	-	200	<10	10	7255548
Surrogate Recovery (%)						
2,4,6-Tribromophenol	%	-	-	66		7257468
2-Fluorobiphenyl	%	-	-	70		7257468
D14-Terphenyl (FS)	%	-	-	76		7257468
D5-Nitrobenzene	%	-	-	87		7257468
D8-Acenaphthylene	%	-	-	86		7257468
Decachlorobiphenyl	%	-	-	81		7265276
4-Bromofluorobenzene	%	-	-	97		7256872
D4-1,2-Dichloroethane	%	-	-	111		7256872
D8-Toluene	%	-	-	94		7256872
RDL = Reportable Detection Limit						
QC Batch = Quality Control Batch						

TEST SUMMARY

BV Labs ID: PCL839 Sample ID: MW204 Matrix: Water					Collected: 2021/03/17 Shipped: Received: 2021/03/18
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Sewer Use By-Law Semivolatile Organics	GC/MS	7257468	2021/03/19	2021/03/22	Kathy Horvat
Biochemical Oxygen Demand (BOD)	DO	7255889	2021/03/19	2021/03/24	Nusrat Naz
Chromium (VI) in Water	IC	7254030	N/A	2021/03/22	Lang Le
Total Cyanide	SKAL/CN	7257264	2021/03/19	2021/03/19	Aditiben Patel
Fluoride	ISE	7256372	2021/03/19	2021/03/19	Surinder Rai
Mercury in Water by CVAA	CV/AA	7261315	2021/03/23	2021/03/23	Gagandeep Rai
Total Metals Analysis by ICPMS	ICP/MS	7260231	N/A	2021/03/23	Prempal Bhatti
E.coli, (CFU/100mL)	PL	7255548	N/A	2021/03/18	Tasbir Singh
Total Nonylphenol in Liquids by HPLC	LC/FLU	7261318	2021/03/23	2021/03/24	Tonghui (Jenny) Chen
Nonylphenol Ethoxylates in Liquids: HPLC	LC/FLU	7261321	2021/03/23	2021/03/24	Dennis Boodram
Animal and Vegetable Oil and Grease	BAL	7254170	N/A	2021/03/24	Automated Statchk
Total Oil and Grease	BAL	7262504	2021/03/23	2021/03/24	Jay Tailor
Polychlorinated Biphenyl in Water	GC/ECD	7265276	2021/03/24	2021/03/25	Svitlana Shaula
рН	AT	7256391	2021/03/19	2021/03/19	Surinder Rai
Phenols (4AAP)	TECH/PHEN	7259063	N/A	2021/03/22	Bramdeo Motiram
Total Kjeldahl Nitrogen in Water	SKAL	7256922	2021/03/19	2021/03/23	Rajni Tyagi
Total PAHs	CALC	7255014	N/A	2021/03/23	Automated Statchk
Mineral/Synthetic O & G (TPH Heavy Oil)	BAL	7262511	2021/03/23	2021/03/24	Jay Tailor
Total Suspended Solids	BAL	7258487	2021/03/20	2021/03/22	Shivani Desai
Volatile Organic Compounds in Water	GC/MS	7256872	N/A	2021/03/22	Blair Gannon

GENERAL COMMENTS

Each te	emperature is the	average of up to	three cooler temperatures taken at receipt
	Package 1	3.7°C	
Sample	PCL839 [MW204] : VOC Analysis:	Due to the sample matrix, sample required dilution. Detection limits were adjusted accordingly.
Results	s relate only to the	e items tested.	

QUALITY ASSURANCE REPORT

01/05			· · · · · · · · · · · · · · · · · · ·					
QA/QC	loi+		Deremeter	Data Analyzad	Value	Decevery		OC Limita
Batch 7254030	Init LLE	QC Type Matrix Spike	Parameter Chromium (VI)	Date Analyzed 2021/03/22	Value	Recovery 100	UNITS %	QC Limits 80 - 120
7254030	LLE	Spiked Blank	Chromium (VI)	2021/03/22		100	%	80 - 120
7254030	LLE	Method Blank	Chromium (VI)	2021/03/22	<0.50	102	∞ ug/L	80 - 120
				2021/03/22				20
7254030	LLE	RPD	Chromium (VI)		NC	0.2	%	20
7255889	NNA	QC Standard	Total BOD	2021/03/24	.2	92	%	80 - 120
7255889	NNA	Method Blank	Total BOD	2021/03/24	<2		mg/L	20
7255889	NNA	RPD	Total BOD	2021/03/24	1.6	100	%	30
7256372	SAU	Matrix Spike	Fluoride (F-)	2021/03/19		106	%	80 - 120
7256372	SAU	Spiked Blank	Fluoride (F-)	2021/03/19		101	%	80 - 120
7256372	SAU	Method Blank	Fluoride (F-)	2021/03/19	<0.10		mg/L	
7256372	SAU	RPD	Fluoride (F-)	2021/03/19	0.46		%	20
7256391	SAU	Spiked Blank	рН	2021/03/19		102	%	98 - 103
7256391	SAU	RPD	рН	2021/03/19	0.042		%	N/A
7256872	BG1	Matrix Spike	4-Bromofluorobenzene	2021/03/22		106	%	70 - 130
			D4-1,2-Dichloroethane	2021/03/22		109	%	70 - 130
			D8-Toluene	2021/03/22		102	%	70 - 130
			Benzene	2021/03/22		89	%	70 - 130
			Chloroform	2021/03/22		97	%	70 - 130
			1,2-Dichlorobenzene	2021/03/22		93	%	70 - 130
			1,4-Dichlorobenzene	2021/03/22		104	%	70 - 130
			cis-1,2-Dichloroethylene	2021/03/22		98	%	70 - 130
			trans-1,3-Dichloropropene	2021/03/22		99	%	70 - 130
			Ethylbenzene	2021/03/22		84	%	70 - 130
			Methylene Chloride(Dichloromethane)	2021/03/22		97	%	70 - 130
			1,1,2,2-Tetrachloroethane	2021/03/22		100	%	70 - 130
			Tetrachloroethylene	2021/03/22		92	%	70 - 130
			Toluene	2021/03/22		90	%	70 - 130
			Trichloroethylene	2021/03/22		101	%	70 - 130
			p+m-Xylene	2021/03/22		87	%	70 - 130
			o-Xylene	2021/03/22		84	%	70 - 130
7256872	BG1	Spiked Blank	4-Bromofluorobenzene	2021/03/22		105	%	70 - 130
			D4-1,2-Dichloroethane	2021/03/22		104	%	70 - 130
			D8-Toluene	2021/03/22		103	%	70 - 130
			Benzene	2021/03/22		89	%	70 - 130
			Chloroform	2021/03/22		96	%	70 - 130
			1,2-Dichlorobenzene	2021/03/22		93	%	70 - 130
			1,4-Dichlorobenzene	2021/03/22		103	%	70 - 130
			cis-1,2-Dichloroethylene	2021/03/22		97	%	70 - 130
			trans-1,3-Dichloropropene	2021/03/22		93	%	70 - 130
			Ethylbenzene	2021/03/22		86	%	70 - 130
			Methylene Chloride(Dichloromethane)			80 94		
			, , , ,	2021/03/22			%	70 - 130
			1,1,2,2-Tetrachloroethane	2021/03/22		95	%	70 - 130
			Tetrachloroethylene	2021/03/22		94	%	70 - 130
			Toluene	2021/03/22		91	%	70 - 130
			Trichloroethylene	2021/03/22		103	%	70 - 130
			p+m-Xylene	2021/03/22		90	%	70 - 130
705 00-5	F 6 -		o-Xylene	2021/03/22		88	%	70 - 130
7256872	BG1	Method Blank	4-Bromofluorobenzene	2021/03/22		101	%	70 - 130
			D4-1,2-Dichloroethane	2021/03/22		111	%	70 - 130
			D8-Toluene	2021/03/22		94	%	70 - 130
			Benzene	2021/03/22	<0.20		ug/L	
			Chloroform	2021/03/22	<0.20		ug/L	

Page 8 of 17

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			1,2-Dichlorobenzene	2021/03/22	<0.40		ug/L	
			1,4-Dichlorobenzene	2021/03/22	<0.40		ug/L	
			cis-1,2-Dichloroethylene	2021/03/22	<0.50		ug/L	
			trans-1,3-Dichloropropene	2021/03/22	<0.40		ug/L	
			Ethylbenzene	2021/03/22	<0.20		ug/L	
			Methylene Chloride(Dichloromethane)	2021/03/22	<2.0		ug/L	
			1,1,2,2-Tetrachloroethane	2021/03/22	<0.40		ug/L	
			Tetrachloroethylene	2021/03/22	<0.20		ug/L	
			Toluene	2021/03/22	<0.20		ug/L	
			Trichloroethylene	2021/03/22	<0.20		ug/L	
			p+m-Xylene	2021/03/22	<0.20		ug/L	
			o-Xylene	2021/03/22	<0.20		ug/L	
			Total Xylenes	2021/03/22	<0.20		ug/L	
7256872	BG1	RPD	Benzene	2021/03/22	NC		%	30
			Chloroform	2021/03/22	NC		%	30
			1,2-Dichlorobenzene	2021/03/22	NC		%	30
			1,4-Dichlorobenzene	2021/03/22	NC		%	30
			cis-1,2-Dichloroethylene	2021/03/22	NC		%	30
			trans-1,3-Dichloropropene	2021/03/22	NC		%	30
			Ethylbenzene	2021/03/22	NC		%	30
			Methylene Chloride(Dichloromethane)	2021/03/22	NC		%	30
			1,1,2,2-Tetrachloroethane	2021/03/22	NC		%	30
			Tetrachloroethylene	2021/03/22	NC		%	30
			Toluene	2021/03/22	NC		%	30
			Trichloroethylene	2021/03/22	NC		%	30
			p+m-Xylene	2021/03/22	NC		%	30
			o-Xylene	2021/03/22	NC		%	30
			Total Xylenes	2021/03/22	NC		%	30
7256922	RTY	Matrix Spike	Total Kjeldahl Nitrogen (TKN)	2021/03/23		95	%	80 - 120
7256922	RTY	QC Standard	Total Kjeldahl Nitrogen (TKN)	2021/03/23		101	%	80 - 120
7256922	RTY	Spiked Blank	Total Kjeldahl Nitrogen (TKN)	2021/03/23		101	%	80 - 120
7256922	RTY	Method Blank	Total Kjeldahl Nitrogen (TKN)	2021/03/23	<0.10		mg/L	
7256922	RTY	RPD	Total Kjeldahl Nitrogen (TKN)	2021/03/23	4.7		%	20
7257264	ABP	Matrix Spike	Total Cyanide (CN)	2021/03/19		88	%	80 - 120
7257264	ABP	Spiked Blank	Total Cyanide (CN)	2021/03/19		97	%	80 - 120
7257264	ABP	Method Blank	Total Cyanide (CN)	2021/03/19	<0.0050		mg/L	
7257264	ABP	RPD	Total Cyanide (CN)	2021/03/19	NC		%	20
7257468	кно	Matrix Spike	2,4,6-Tribromophenol	2021/03/22		78	%	10 - 130
			2-Fluorobiphenyl	2021/03/22		84	%	30 - 130
			D14-Terphenyl (FS)	2021/03/22		86	%	30 - 130
			D5-Nitrobenzene	2021/03/22		94	%	30 - 130
			D8-Acenaphthylene	2021/03/22		92	%	30 - 130
			Di-N-butyl phthalate	2021/03/22		95	%	30 - 130
			Bis(2-ethylhexyl)phthalate	2021/03/22		91	%	30 - 130
			3,3'-Dichlorobenzidine	2021/03/22		51	%	30 - 130
			Pentachlorophenol	2021/03/22		59	%	30 - 130
			Phenanthrene	2021/03/22		94	%	30 - 130
			Anthracene	2021/03/22		90	%	30 - 130
			Fluoranthene	2021/03/22		102	%	30 - 130
			Pyrene	2021/03/22		103	%	30 - 130
			Benzo(a)anthracene	2021/03/22		92	%	30 - 130
			Chrysene	2021/03/22		106	%	30 - 130

Page 9 of 17

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC			QUALITY ASSOCANCE	. ,				
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Benzo(b/j)fluoranthene	2021/03/22		99	%	30 - 130
			Benzo(k)fluoranthene	2021/03/22		94	%	30 - 130
			Benzo(a)pyrene	2021/03/22		88	%	30 - 130
			Indeno(1,2,3-cd)pyrene	2021/03/22		96	%	30 - 130
			Dibenzo(a,h)anthracene	2021/03/22		94	%	30 - 130
			Benzo(g,h,i)perylene	2021/03/22		95	%	30 - 130
			Dibenzo(a,i)pyrene	2021/03/22		100	%	30 - 130
			Benzo(e)pyrene	2021/03/22		107	%	30 - 130
			Perylene	2021/03/22		88	%	30 - 130
			Dibenzo(a,j) acridine	2021/03/22		94	%	30 - 130
			7H-Dibenzo(c,g) Carbazole	2021/03/22		73	%	30 - 130
			1,6-Dinitropyrene	2021/03/22		109	%	30 - 130
			1,3-Dinitropyrene	2021/03/22		120	%	30 - 130
			1,8-Dinitropyrene	2021/03/22		81	%	30 - 130
7257468	кно	Spiked Blank	2,4,6-Tribromophenol	2021/03/22		76	%	10 - 130
			2-Fluorobiphenyl	2021/03/22		80	%	30 - 130
			D14-Terphenyl (FS)	2021/03/22		88	%	30 - 130
			D5-Nitrobenzene	2021/03/22		99	%	30 - 130
			D8-Acenaphthylene	2021/03/22		91	%	30 - 130
			Di-N-butyl phthalate	2021/03/22		97	%	30 - 130
			Bis(2-ethylhexyl)phthalate	2021/03/22		90	%	30 - 130
			3,3'-Dichlorobenzidine	2021/03/22		101	%	30 - 130
			Pentachlorophenol	2021/03/22		44	%	30 - 130
			Phenanthrene	2021/03/22		94	%	30 - 130
			Anthracene	2021/03/22		91	%	30 - 130
			Fluoranthene	2021/03/22		103	%	30 - 130
			Pyrene	2021/03/22		103	%	30 - 130
			Benzo(a)anthracene	2021/03/22		92	%	30 - 130
			Chrysene	2021/03/22		105	%	30 - 130
			Benzo(b/j)fluoranthene	2021/03/22		99	%	30 - 130
			Benzo(k)fluoranthene	2021/03/22		104	%	30 - 130
			Benzo(a)pyrene	2021/03/22		85	%	30 - 130
			Indeno(1,2,3-cd)pyrene	2021/03/22		97	%	30 - 130
			Dibenzo(a,h)anthracene	2021/03/22		94	%	30 - 130
			Benzo(g,h,i)perylene	2021/03/22		94	%	30 - 130
			Dibenzo(a,i)pyrene	2021/03/22		103	%	30 - 130
			Benzo(e)pyrene	2021/03/22		104	%	30 - 130
			Perylene	2021/03/22		92	%	30 - 130
			Dibenzo(a,j) acridine	2021/03/22		90	%	30 - 130
			7H-Dibenzo(c,g) Carbazole	2021/03/22		82	%	30 - 130
			1,6-Dinitropyrene	2021/03/22		115	%	30 - 130
			1,3-Dinitropyrene	2021/03/22		115	%	30 - 130 30 - 130
						82		30 - 130
7257468	кно	Method Blank	1,8-Dinitropyrene 2,4,6-Tribromophenol	2021/03/22 2021/03/22		82 54	% %	30 - 130 10 - 130
1231400	NITU	MELIIUU BIdIIK	2-Fluorobiphenyl	2021/03/22		54 85	%	10 - 130 30 - 130
				2021/03/22		85 89	%	30 - 130 30 - 130
			D14-Terphenyl (FS)					
			D5-Nitrobenzene	2021/03/22		95	%	30 - 130
			D8-Acenaphthylene	2021/03/22	-2	90	%	30 - 130
			Di-N-butyl phthalate	2021/03/22	<2		ug/L	
			Bis(2-ethylhexyl)phthalate	2021/03/22	<2		ug/L	
			3,3'-Dichlorobenzidine	2021/03/22	<0.8		ug/L	
			Pentachlorophenol	2021/03/22	<1		ug/L	

Page 10 of 17

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Phenanthrene	2021/03/22	<0.2		ug/L	
			Anthracene	2021/03/22	<0.2		ug/L	
			Fluoranthene	2021/03/22	<0.2		ug/L	
			Pyrene	2021/03/22	<0.2		ug/L	
			Benzo(a)anthracene	2021/03/22	<0.2		ug/L	
			Chrysene	2021/03/22	<0.2		ug/L	
			Benzo(b/j)fluoranthene	2021/03/22	<0.2		ug/L	
			Benzo(k)fluoranthene	2021/03/22	<0.2		ug/L	
			Benzo(a)pyrene	2021/03/22	<0.2		ug/L	
			Indeno(1,2,3-cd)pyrene	2021/03/22	<0.2		ug/L	
			Dibenzo(a,h)anthracene	2021/03/22	<0.2		ug/L	
			Benzo(g,h,i)perylene	2021/03/22	<0.2		ug/L	
			Dibenzo(a,i)pyrene	2021/03/22	<0.2		ug/L	
			Benzo(e)pyrene	2021/03/22	<0.2		ug/L	
			Perylene	2021/03/22	<0.2		ug/L	
			Dibenzo(a,j) acridine	2021/03/22	<0.4		ug/L	
			7H-Dibenzo(c,g) Carbazole	2021/03/22	<0.4		ug/L	
			1,6-Dinitropyrene	2021/03/22	<0.4		ug/L	
			1,3-Dinitropyrene	2021/03/22	<0.4		ug/L	
			1,8-Dinitropyrene	2021/03/22	<0.4		ug/L	
257468	кно	RPD	Di-N-butyl phthalate	2021/03/22	8.9		%	40
237400	KIIO		Bis(2-ethylhexyl)phthalate	2021/03/22	NC		%	40
			3,3'-Dichlorobenzidine	2021/03/22	NC		%	40 40
			Pentachlorophenol	2021/03/22	NC		%	40 40
			Phenanthrene		NC		%	40 40
				2021/03/22				
			Anthracene	2021/03/22	NC		%	40
			Fluoranthene	2021/03/22	NC		%	40
			Pyrene	2021/03/22	NC		%	40
			Benzo(a)anthracene	2021/03/22	NC		%	40
			Chrysene	2021/03/22	NC		%	40
			Benzo(b/j)fluoranthene	2021/03/22	NC		%	40
			Benzo(k)fluoranthene	2021/03/22	NC		%	40
			Benzo(a)pyrene	2021/03/22	NC		%	40
			Indeno(1,2,3-cd)pyrene	2021/03/22	NC		%	40
			Dibenzo(a,h)anthracene	2021/03/22	NC		%	40
			Benzo(g,h,i)perylene	2021/03/22	NC		%	40
			Dibenzo(a,i)pyrene	2021/03/22	NC		%	40
			Benzo(e)pyrene	2021/03/22	NC		%	40
			Perylene	2021/03/22	NC		%	40
			Dibenzo(a,j) acridine	2021/03/22	NC		%	40
			7H-Dibenzo(c,g) Carbazole	2021/03/22	NC		%	40
			1,6-Dinitropyrene	2021/03/22	NC		%	40
			1,3-Dinitropyrene	2021/03/22	NC		%	40
			1,8-Dinitropyrene	2021/03/22	NC		%	40
258487	SDE	QC Standard	Total Suspended Solids	2021/03/22		96	%	85 - 11
258487	SDE	Method Blank	Total Suspended Solids	2021/03/22	<10		mg/L	
258487	SDE	RPD	Total Suspended Solids	2021/03/22	5.1		%	25
259063	BMO	Matrix Spike	Phenols-4AAP	2021/03/22		97	%	80 - 120
259063	BMO	Spiked Blank	Phenols-4AAP	2021/03/22		103	%	80 - 120
259063	BMO	Method Blank	Phenols-4AAP	2021/03/22	<0.0010		mg/L	
259063	BMO	RPD	Phenols-4AAP	2021/03/22	NC		%	20
260231	PBA	Matrix Spike	Total Aluminum (Al)	2021/03/23	-	115	%	80 - 120

Page 11 of 17

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Total Antimony (Sb)	2021/03/23		100	%	80 - 120
			Total Arsenic (As)	2021/03/23		101	%	80 - 120
			Total Cadmium (Cd)	2021/03/23		101	%	80 - 120
			Total Chromium (Cr)	2021/03/23		95	%	80 - 120
			Total Cobalt (Co)	2021/03/23		100	%	80 - 120
			Total Copper (Cu)	2021/03/23		99	%	80 - 120
			Total Lead (Pb)	2021/03/23		103	%	80 - 120
			Total Manganese (Mn)	2021/03/23		97	%	80 - 120
			Total Molybdenum (Mo)	2021/03/23		102	%	80 - 120
			Total Nickel (Ni)	2021/03/23		98	%	80 - 120
			Total Phosphorus (P)	2021/03/23		104	%	80 - 120
			Total Selenium (Se)	2021/03/23		107	%	80 - 120
			Total Silver (Ag)	2021/03/23		99	%	80 - 120
			Total Tin (Sn)	2021/03/23		99	%	80 - 120
			Total Titanium (Ti)	2021/03/23		97	%	80 - 120
			Total Zinc (Zn)	2021/03/23		102	%	80 - 120
7260231	PBA	Spiked Blank	Total Aluminum (Al)	2021/03/23		105	%	80 - 120
			Total Antimony (Sb)	2021/03/23		101	%	80 - 120
			Total Arsenic (As)	2021/03/23		104	%	80 - 120
			Total Cadmium (Cd)	2021/03/23		102	%	80 - 120
			Total Chromium (Cr)	2021/03/23		98	%	80 - 120
			Total Cobalt (Co)	2021/03/23		103	%	80 - 120
			Total Copper (Cu)	2021/03/23		102	%	80 - 120
			Total Lead (Pb)	2021/03/23		104	%	80 - 120
			Total Manganese (Mn)	2021/03/23		100	%	80 - 120
			Total Molybdenum (Mo)	2021/03/23		104	%	80 - 120
			Total Nickel (Ni)	2021/03/23		102	%	80 - 120
			Total Phosphorus (P)	2021/03/23		108	%	80 - 120
			Total Selenium (Se)	2021/03/23		110	%	80 - 120
			Total Silver (Ag)	2021/03/23		101	%	80 - 120
			Total Tin (Sn)	2021/03/23		99	%	80 - 120
			Total Titanium (Ti)	2021/03/23		98	%	80 - 120
			Total Zinc (Zn)	2021/03/23		106	%	80 - 120
7260231	PBA	Method Blank	Total Aluminum (Al)	2021/03/24	<4.9		ug/L	
			Total Antimony (Sb)	2021/03/24	<0.50		ug/L	
			Total Arsenic (As)	2021/03/24	<1.0		ug/L	
			Total Cadmium (Cd)	2021/03/24	<0.090		ug/L	
			Total Chromium (Cr)	2021/03/24	<5.0		ug/L	
			Total Cobalt (Co)	2021/03/24	<0.50		ug/L	
			Total Copper (Cu)	2021/03/24	<0.90		ug/L	
			Total Lead (Pb)	2021/03/24	<0.50		ug/L	
			Total Manganese (Mn)	2021/03/24	<2.0		ug/L	
			Total Molybdenum (Mo)	2021/03/24	<0.50		ug/L	
			Total Nickel (Ni)	2021/03/24	<1.0		ug/L	
			Total Phosphorus (P)	2021/03/24	<100		ug/L	
			Total Selenium (Se)	2021/03/24	<2.0		ug/L	
			Total Silver (Ag)	2021/03/24	<0.090		ug/L	
			Total Tin (Sn)	2021/03/24	<1.0		ug/L	
			Total Titanium (Ti)	2021/03/24	<5.0		ug/L	
			Total Zinc (Zn)	2021/03/24	<5.0		ug/L	
7260231	PBA	RPD	Total Aluminum (Al)	2021/03/24	4.0		%	20
			Total Antimony (Sb)	2021/03/24	NC		%	20

Page 12 of 17

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Total Arsenic (As)	2021/03/24	NC		%	20
			Total Cadmium (Cd)	2021/03/24	3.4		%	20
			Total Chromium (Cr)	2021/03/24	NC		%	20
			Total Cobalt (Co)	2021/03/24	NC		%	20
			Total Copper (Cu)	2021/03/24	1.7		%	20
			Total Lead (Pb)	2021/03/24	NC		%	20
			Total Manganese (Mn)	2021/03/24	1.4		%	20
			Total Molybdenum (Mo)	2021/03/24	3.9		%	20
			Total Nickel (Ni)	2021/03/24	1.6		%	20
			Total Phosphorus (P)	2021/03/24	NC		%	20
			Total Selenium (Se)	2021/03/24	NC		%	20
			Total Silver (Ag)	2021/03/24	NC		%	20
			Total Tin (Sn)	2021/03/24	5.0		%	20
			Total Titanium (Ti)	2021/03/24	13		%	20
			Total Zinc (Zn)	2021/03/24	1.4		%	20
7261315	GR1	Matrix Spike	Mercury (Hg)	2021/03/23		95	%	75 - 125
7261315	GR1	Spiked Blank	Mercury (Hg)	2021/03/23		99	%	80 - 120
7261315	GR1	Method Blank	Mercury (Hg)	2021/03/23	<0.00010		mg/L	
7261315	GR1	RPD	Mercury (Hg)	2021/03/23	NC		%	20
7261318	TJC	Matrix Spike	Nonylphenol (Total)	2021/03/23		109	%	50 - 130
7261318	TJC	Spiked Blank	Nonylphenol (Total)	2021/03/23		103	%	50 - 130
7261318	TJC	Method Blank	Nonylphenol (Total)	2021/03/23	<0.001		mg/L	
7261318	TJC	RPD	Nonylphenol (Total)	2021/03/24	NC		%	40
7261321	DEO	Matrix Spike	Nonylphenol Ethoxylate (Total)	2021/03/23		88	%	50 - 130
7261321	DEO	Spiked Blank	Nonylphenol Ethoxylate (Total)	2021/03/23		83	%	50 - 130
7261321	DEO	Method Blank	Nonylphenol Ethoxylate (Total)	2021/03/23	<0.005		mg/L	
7261321	DEO	RPD	Nonylphenol Ethoxylate (Total)	2021/03/23	NC		%	40
7262504	JT5	Spiked Blank	Total Oil & Grease	2021/03/24		97	%	85 - 115
7262504	JT5	RPD	Total Oil & Grease	2021/03/24	0.52		%	25
7262504	JT5	Method Blank	Total Oil & Grease	2021/03/24	<0.50		mg/L	
7262511	JT5	Spiked Blank	Total Oil & Grease Mineral/Synthetic	2021/03/24		97	%	85 - 115
7262511	JT5	RPD	Total Oil & Grease Mineral/Synthetic	2021/03/24	3.1		%	25
7262511	JT5	Method Blank	Total Oil & Grease Mineral/Synthetic	2021/03/24	<0.50		mg/L	
7265276	SVS	Matrix Spike	Decachlorobiphenyl	2021/03/25		89	%	60 - 130
			Total PCB	2021/03/25		45 (1)	%	60 - 130
7265276	SVS	Spiked Blank	Decachlorobiphenyl	2021/03/25		62	%	60 - 130
			Total PCB	2021/03/25		79	%	60 - 130
7265276	SVS	Method Blank	Decachlorobiphenyl	2021/03/25		89	%	60 - 130
			Total PCB	2021/03/25	<0.05		ug/L	

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
7265276	SVS	RPD	Total PCB	2021/03/25	NC	•	%	40
N/A = No	ot Applic	able						
Duplicate	e: Paire	d analysis of a sep	arate portion of the same sample. Used to	evaluate the variance in the measurer	ment.			
Matrix Sp	oike: A	sample to which a	known amount of the analyte of interest h	has been added. Used to evaluate sam	ple matrix inte	rference.		
QC Stand	lard: A s	ample of known c	oncentration prepared by an external ager	ncy under stringent conditions. Used a	is an independ	lent check of me	thod accur	acy.
Spiked Bl	lank: A k	olank matrix samp	e to which a known amount of the analyte	e, usually from a second source, has be	en added. Use	d to evaluate m	ethod accu	iracy.
Method I	Blank: A	A blank matrix con	taining all reagents used in the analytical p	rocedure. Used to identify laboratory	contaminatior	1.		
Surrogate	e: A pui	re or isotopically la	beled compound whose behavior mirrors	the analytes of interest. Used to evalu	ate extraction	efficiency.		
NC (Dupl differenc		, ,	RPD was not calculated. The concentration	in the sample and/or duplicate was to	o low to perm	it a reliable RPD	calculatior	n (absolute
(1) Matr	ix Snike	exceeds accent	ance limits probable matrix interferenc	° P				

(1) Matrix Spike exceeds acceptance limits, probable matrix interference.

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Anastassia Hamanov, Scientific Specialist

las

Tasbir Singh, Lab Technician

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

		INVOICE TO:		-	REP	ORT TO:				1		PROJEC	THEODILLE				
any Na	me #12541 Pott	inger Gaherty Environmental Cor	nsultants Come	any Name: PC	il.					1			T INFORMATION	5	-	Laboratory Use	Only:
no	Accounts Pay		Attenti	on Paule	a Schuster R	uan C	cok			P O #	on #	C1035				BV Labs Job #:	Bottle Order #:
5	250 Water Str Whitby ON L1		Addres	SS:		9				PO#		5660-0			-		
	(905) 668-490		000	FC	rackQ	pagrou	p.o	an		Project	Name	-			-	COC #:	818096 Project Manager:
		.com; labdataon@pggroup.com	909 Tel Email:	(905)	668-4908 Ext	115 Fax				Site #					L DO		Project manager;
NOE F	EGULATED DRINK	ING WATER OR WATER INTEND	ED FOD HUMAN	a a la	uster@pggrou	b.com,LabD	ataON@	pggrou		Sample			SIRE	SC.	0.0100	C#816096-01-01	Deepthi Shaji
1.100	SUBMITTE	D ON THE BV LABS DRINKING W	VATER CHAIN OF	CUSTODY	N MUST BE			T	AN	NALYSIS R	EQUESTE	D (PLEASE B	E SPECIFIC)	1 1		Turnaround Time (TAT) F	Required:
	lation 153 (2011)	Other Regula	the second se	and the same is not the same is not the	Instructions	circle):	100-			S(B)		C			Regular (Please provide advance notice t Standard) TAT:	or rush projects
	Res/Park Med	dum/Fine CCME Sanitary S	Sewer Bylaw	alicoun	in all de lights		Wer (HS & F1-F4		S Me		13				ed if Rush TAT is not specified)	
able 2	Age/Other For					leas	TH Se	32.00		ICPMS	in.	ston			Standard TA	T = 5-7 Working days for most tests.	4
able		RSC MISA Municipality PWQO Reg 406				d Filtered (please Metals / Hg / Cr	85101			pan	0 Reg 153 VOCs by HS	03		•	Please note days - contac	Standard TAT for certain tests such as E ct your Project Manager for details	BOD and Dioxins/Furans are > 5
		Other	14010			ittere tals	yistry	153 VOCs by	PAHs	Disso	/OCs	その			Job Specifi	ic Rush TAT (if applies to entire subr	nission)
	Include Crite	eria on Certificate of Analysis (Y/N)	2 Y	-		eld Filtered Metals / F	o Sar		153	53	1531	20			Date Require	ed Tir mation Number:	ne Required
Sar	nple Barcode Label	Sample (Location) Identification	Date Sampled	Time Sampled	Matrix	- Ĕ	foronto 2016)	D Reg	0.Reg	Reg	Reg	28			# of Bottles		all lab for #)
		MW204	3031/03/1	7 2pm	GW		P-N	0	0	0	0				-	Comm	ents
-		TIM dug	SC MI CON	adain	GN	N		1	1			X			19		
											1.00				-		
			-														
			_														
								-									-2
								1.111									
					-												
			-												1		
															-	10.1.	
			-													18-Mar-21 15:33	
																eepthi Shaji	
																C17000	
															1.	C172290	
													-		ATM	env-1305	
																Sur-1505	
											-		_				
	RELINQUISHED BY (S	Signature/Print) Date: (Y	Y/MM/DD) Tir		PERENTER	1.10		_									
ilas	Why Ayes	ina shah 21/03		30 1001	ur lang	1: (Signature/Pr	- /	1	Date: (YY/MI	1.	Tir		# jars used and not submitted		Laborato	pry Use Only	
		RITING, WORK SUBMITTED ON THIS CHAIN OF OUR TERMS WHICH ARE AVAILABLE F		110	of the ca				1/03/		15:3	53	0	Time Sensitive	Temperatur	e (°Q) on Recei Custody Sea	Yes No

Exceedance Summary Table – Toronto San/Stm Sewer

Result Exceedances

Sample ID	BV Labs ID	Parameter	Criteria	Result	DL	UNITS				
No Exceedances										
The exceedance summary table is for information purposes only and should not be considered a comprehensive listing or statement of conformance to										
applicable regulatory gui	idelines.									